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I.  BACKGROUND, OBJECTIVES AND RECOMMENDATIONS FROM THE TASK
ORDER

This is the final report summarizing the goals, methodologies and findings of the Sentinel Survival
Workgroup 2 task order. The main objective of this working group wasto evaluate statistical methods
for controlling confounding when using Sentinel claims data to estimate the hazardratio of a chronic
exposure on a binary, potentially rare, outcome. All analyses use time to event Cox Proportional Hazards
models that can account for varying follow-up time. Different methods to control for confounding are
considered in this work order, more specifically propensity score regression and propensity score
stratification. These methods are considered in a distributed data setting with a constraint of no sharing
of subject level information betweensites but where sharing of some summary level information is
possible. The test cases, interim and final goals of this working group are shown in Figure 1 and
discussed in the remainder of this section.

This report compares the performance of multiple methods with simulated data in realistic scenarios. To
generate these realistic scenarios, this workgroup built a simulation tool described in Section Il. The
simulation frameworkis a two-stage process. The first stage extracts summary level information from
subject-level realworld data. The second stage generatessubject level data from summary level
information. The resulting simulated data mimics real world settingslike Sentinel with complex
relationships between confounders, exposure of interest, and outcomes. Key aspects include simulating
numerous confounders that canbe relatedto each other, different exposure and confounder
relationships, and outcome relationships with complex censoring and outcome distributions. This
simulation framework was used to generate data to compare different methods throughout the rest of
the report.

In Section Ill we present different methods for control of confounding and estimating risk for the non-
distributed data setting. Then, we report performance of these methods in Section IV from a simulation
evaluation. The simulation specifications were anchored to two real examples: 1) ACE and angioedema
and 2) Rivaroxaban and Ischemic Stroke, but only for non-distributed data setting methods. In Section V
we present methods viable for the distributed data setting extending the most promising non-
distributed data approaches. Finally, Section IV shows a simulation evaluation using the realdata
examples as anchors.

Appendix C shows results of related work on binary outcomes rather than time to event outcome. This
work evaluates statistical properties of the proposed propensity score methods in this task order as well
as exposure matching and IPTW methods that are not included in this task order.

Some of the methods that are compared are not fully implemented in Sentinel. Thus, the regulatoryaim
of this workgroup is to provide advice on which methods are appropriate for certain specifications of
exposure, outcome prevalence and variability between sites. Further, the new simulation tool can now
be replicated by researchersin both Sentinel and outside of Sentinel who are interestedin comparing
methods for survival outcomes. By allowing for correlated and complex confounder relationships the
tool makes it easier for researchers to simulate more realistic data including claims data.

We focused on methods that estimate a conditional hazardratio (HR) and not methods that estimate a
marginal time average HR such as exposure matching or inverse probability of treatment weighting

Sentinel Methods Report -1- Safety Signaling Methods for Survival
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(IPTW). Methods which estimate marginal HR are investigated in other Sentinel working groups?.
Simulations in Section IV and Section VI support using 10 PS strata ratherthan5 PS strata as a preferred
default for PS stratification. Similarly, in PS regression, using PS indicators for 10 strata performed well
and using splines on the PS score had better properties.

To determine the scope of methods considered in this workgroup, we relied on what wasknown in the
literature and filled some gaps. Austin 2014(41) compared exposure matching, IPTW, stratification, and
regression on the propensity score (PS) for estimating marginal and conditional HRs. The simulations in
the paper showed that IPTW and exposure matching were unbiased for the marginaltime average HR,
with IPTW being more efficient than 1:1 PS exposure matching. Moreover, the author showed that
stratification and regression were biased in estimating the conditional HR.

A limitation of the findings in this paper is that the author investigated PS stratification with only 5 strata
which probably explains the large observed biases due to residual confounding. Using PS quintiles or 5
PS stratais a recommendationfrom the past 20 years because it can eliminate up to 90% of bias due to
measured confounding. However, recent work has shown that 5 stratais often not sufficient to control
for confounding (33) with recommendation for using as many as 10 stratain an analysis. (46) Larger
number of strata canreduce up to 95% of the bias, a more current standard nowadays with richer
datasetsavailable to estimate smaller safety risks considered the standard. (8, 36)(4) Our simulation
evaluation in Sections IV and VI show that we have similar results reducing bias between 96-99% when
stratifying on 10 PS strata by site. We recommend from both literature and our simulation evaluation
presented in this report that at least 10 PS strata should be used and sensitivity analyses in which 15 or
20 PS strata are used to assess if residual confounding still persists. However, some caution should be
taken for too many strata if most strata become too sparse.(39)

Another issue with methods in Austin was the application of PS regression adjustment using either a
linear PS term or adjusting for 5 propensity score stratumindicators. Assuming a linear relationship
between the propensity score and the log hazardis likely not the correct model specification and
therefore may lead to residual confounding. We show throughout this document that adjusting for
splines was a straightforward approachto fix this issue. However, in the distributed data setting splines
are likely not feasible since they require subject level propensity score data. Adjusting for 5 propensity
score indicators may not be enough to provide the flexibility needed in the propensity score model,
depending upon the amount of confounding and distribution of the propensity score. This mirrors the
issues with bias when only stratifying by 5 propensity score strata. We find in our simulation study that
atleast 10 strata were needed when doing propensity score adjustment. Therefore, similar to
propensity score stratification, when doing propensity score adjustment, we recommend use of a
flexible modeling approach like splines, or to use atleast 10 quantile strata for adjustment, with
sensitivity analyses for 15 or 20 strata.

A final issue with Austin? is that his simulation was not anchored in real examples and did not consider
censoring. This motivated our analyses to mimic extensive censorings observed in post-market safety
surveillance in electronic healthcare data.

Lhttps://www.sentinelinitiative.org/sentinel/methods/evaluation-propensity-score-based-methods-sentinel-
study-settings-using-simulation

Sentinel Methods Report -2- Safety Signaling Methods for Survival
Outcomes to Control for Confounding
in the Mini-Sentinel Distributed Database



Sentinel’
[

This work follows from previous a Mini-Sentinel workgroup (Survival Workgroup 1; Task Order PI:
Cook(44)), further described in the AppendixA.

Figure 1. Test cases, interimand main goals of the survivalworking group

ACE/ARB Generate Evaluate
Angioedema claims like Survival
survival data Methods
_ using a new (PS
Rivaroxaban- simulation -
Warfarin and tool f)t;atlﬂcatlon
Stroke

I> |> Regression)

II.  SIMULATING REALISTIC TIME-TO-EVENT DATA USING SHAREABLE SUMMARY
INFORMATION THATPROTECTS DATA PRIVACY

A. INTRODUCTION

There has been a rise in the use of large complex observational cohorts to address comparative
effectiveness and safety research questions, primarily due to the development of collaborative research
and data networks. Examples of such national research networks include the Health Care Systems
Research Network (HCSRN), the Food and Drug Administration’s Sentinel Initiative (FDA’s Sentinel
Initiative), and the emergent Patient-Centered Outcomes Research Network (PCORnet). Each of these
data networks is comprised of an assemblage of partner organizationthat collect electronic health and
claims data as part of their operations, but not necessarily for the purpose of research or medical
product regulation. The FDA’s Sentinel initiative, with its focus on postmarket safety surveillance, is
especially interesting from a statistical perspective.

The standard approachto evaluating statistical methods is to conduct simulation experiments probing
for scenarios that result in loss of accuracy, precision and/or power. As discussed by Franklin, etal.
(2014)(42) there are a number of reasons why it may be advantageousto connect the data generation
mechanism used in a simulation to an actual empirical study. Using data from existing empirical studies
to inform data generationis useful in narrowing the focus of a simulation to those issues, both known
and unknown, that are most salient to the particular context in which studies are being conducted. For
postmarket safety surveillance efforts taking place within Sentinel, some important context-specific
issues that maywarrant consideration include: Rare events, rare exposures, confounding of varying
degree and by a potentially large number of variables, complex relationships between confounding
variables, covariate dependent censoring times and idiosyncratic prescribing patternsacross
institutions.

A further consideration when conducting researchin a distributed data network is the need to maintain
the privacy of patient-level data and to conduct researchin such a way that sharing of data, which may
be considered proprietary, is minimized. Franklin et al (2014)(42) presented plasmode simulation with
patient-level data from empirical cohort studies as an effective way to mimic the complexity of the
observed data for simulation evaluations. However, when privacy or proprietary concerns preclude
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sharing subject-level data, plasmode simulation may not be feasible. In this paper we propose
techniques for simulating data that reflect important and unique aspects of the data from an empirical
surveillance study. Summary information ranging from basic descriptive statistics to model coefficients
can be estimated through distributed queries to any number of data partner sites and then used to
simulate realistic data. We will assess performance using an example from five healthcare organizations
that participate in the FDA Sentinel Initiative. The original evaluation compared the angiotensin-
converting enzyme inhibitors (ACEI) to beta blockers (BB) with respect to the onset of angioedema, a
potentially life-threatening allergic reaction.

B. METHODS

In Section B.1 we introduce and detail the necessary notation. In Section B.2 we describe several
statistical techniques for using site-specific summary information to simulate realistic subject-level
confounder, drug exposure, time-to-event and time-to-censoring data. Section B.3 discusses the use of
bootstrap sampling as a means of comparing data simulated using summary statisticsto the underlying
data source that was used to compute the summary statistics.

1. Notation

We assume that subject i (i=1,...,n), hasa set of J binary covariates, B; = (B;q, .-, BL-]) and a set of K
categorical covariates, C; = (Cyy, ..., Cig). Let B;; represent the j*" binary covariate (j=1,...,J) with levels 0
and 1 and C;;, represent the k' categorical covariate (k=1,...,K) withlevels / (I=1,..,L; ). We denote the
probability, or mean, of the jt" binary covariate, P(Bj =1),as Ps;» and the vector of probabilities

(marginal proportions) for the Ly levels of the k" categorical variable as p, . When referring to the
combined vector of binary and categorical covariatesfor subject i we use the notation Z; = (B;, C;).

The binary indicator of exposure is denoted as X; for the it" subject and equals 1 if they are exposed and
0 otherwise. Additionally, we assume that each subject has an exposure time T; which is the minimum
of their event time, TiE, and their censoring time, TiC. Y; is the outcome and is coded 1 if an event
occurred (Tl-ESTiC ) and 0 otherwise. For the remainder of the manuscript we assume that the following
observed data elements are available to inform simulation: X, Z, Y, and T.

2. Simulating Data Using Summary Information

The general framework of this approachis to simulate subject level covariates, exposure variables, and
time-to-event or censoring outcome variables from summary level data. This section will outline a set of
summary estimates that can be obtained from collected data and used to simulate different types of
subject-level data. Inaddition, this section will outline which summary information is needed to emulate
the simulations that were conducted in this report, and how the summary information can be used to
generate purely simulated subject-level data that resembles the observed data in predefined ways. The
material presented here is by no means meant to be exhaustive. Indeed, there are a myriad of
possibilities for modification and customization within the framework considered. The following list
provides a brief summary of the methods considered and the statistics collected for each type of data
that we want to simulate and is followed by sections which provide a brief description of each
technique.
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1. Covariates:

a. Binned Multivariate Normal Distributions: Marginal empirical probabilities for each
variable level and bivariate correlations between variables.

b. Chain of regressions: Coefficients from a sequence of regression models predicting each
covariatein-turn.

c. Bootstrap: Samples withreplacement from the set of observed subject covariate
vectors.

2. Exposure given Covariates:

a. Bernoulli distribution: Probability of exposure dependent on covariates predicted by
model with coefficients from pre-specified, site-specific propensity score models
estimated via logistic regression.

b. Bootstrap: Samples with replacement from the set of observed subject covariate vectors
including drug exposure.

3. Time-to-Outcome given exposure and covariates:

a. Parametricsurvival regression: Time-to-Event simulated from Weibull distributions
where parametersare conditional on covariates/exposure and are estimated with site-
specific models.

b. Bootstrap: Samples with replacement from subject-level covariate, exposure, exposure
time and outcome vectors.

4. Time-to-censoring given exposure and covariates:

a. Parametricsurvival regression: Time-to-Censoring simulated from Weibull distributions
where parametersare conditional on covariates/exposure and are estimated with site-
specific models, under three different scenarios:

i. Censoring not dependent on covariates;
ii. Censoring not dependent on covariates, but censoring times come from a
mixture of a discrete distribution and a continuous distribution.
iii. Censoring depends on covariates and drug exposure.

b. Bootstrap: Samples with replacement from subject-level covariate, drug exposure,

exposure time and censoring vectors.

a. Covariates

i. Multivariate Normal Thresholding

Techniques for simulating correlated binary and ordinal categorical variables using multivariate normal
thresholding, referred toas the “mean mapping method” , have been described previously in working
papers by Leisch, Weingessel and Hornik(23) and Kaiser, Trager and Leisch(35), respectively. The authors
also developed two R packages, bindata and orddata, that include routines for generating correlated
binary and categorical variables. These packages include multiple methods for simulating data,
including multivariate normal thresholding as one option.

The examples presented in this report make use exclusively of bindata and orddata but there are also
several other publications and R packagesimplementing simulation of correlated binary, ordinal, normal
continuous, and non-normal continuous random variables, as well as combinations of the
aforementioned. For SAS, multivariate normal thresholding for simulation of correlated ordinal random
variables is discussed and implemented in SAS/IML by Wicklin (2003)(37).
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The following sections provide a brief overview of the selection of methods that were used to generate
the results presented in this report.

Binary and Categorical Covariates

Simulation of binary and categorical variablesthat reflect the correlation observed in the source data
can be accomplished by taking random draws from the multivariate normal distribution with a specified
correlation matrix and then thresholding (binning) each of the simulated normal variables at quantiles
that correspond to steps in the estimated cumulative distribution function of each binary and/or
categorical covariate. Inthis report, the R packages bindata and ordata, both of which implement
multivariate normal thresholding, were used to generate binary covariatesand/or combinations of
binary and categorical covariates, respectively. Both packagesuse asimilar methodology wherein
observed data dependencies, or summary statistics, are connected to the multivariate normal
distribution by creating equivalence between the pairwise correlations of the observed binary and/or
categorical covariates and the correlation matrix of a bivariate normal distribution. Explicit detail can be
found in the publications of Kaiser et al,(35) but in brief, the method equates the pairwise joint empirical
cumulative distribution function estimated from the data, with a standard bivariate normal distribution.
Kaiser, Trager and Leisch(35) show that

L-1 Li-1
Fcc,(c1,62) = peyc, /Uczl /Gczz — Uc,Mc, = L1Ly + Ly z Fe,(c) + 1L, z Fc ()
1sci=ly-1 =1 ci=1

1SC25L2—1
where F¢ ¢, (c1,¢;) = P(Cy < ¢4,C; < ¢3) and pe ¢, is the Spearman correlation between C; and C,.

The bivariate normal distribution with unknown correlation p 7 is substituted on the left-hand side to
yield

cI)Z1ZZ (chl(Cﬂ 'QFCZ (c2) Pz, z, )

1<c1= L1

1=<cz<Lp, -1
L,—1 L1
= Pc,c, Gczl /ng — U, = LiLy + 1Ly Z Fe,(c) + L, Z F¢, (cy)
c=1 c1=1

where F¢, (¢) is the estimated marginal cumulative distribution function of an integer-valued discrete
random variable C;. The marginal cumulative distribution function is defined hereas F¢, (¢) =

Yk<c P(C; = k). Thevalues Fe,(c) forc € {1, ...,L;} arethe quantiles of a standard normal distribution
that correspond to the F¢, (c)™ percentiles of the observed variables. L; and L, are the number of levels
of Cyand Cy. (¢, Ke,) (aczl,aczz), and p¢, ¢, arethe means, variances, and Pearson correlation of C;
and C,, computed as if the variables were continuous.

To estimate the multivariate normal correlation parameter p; , in equation above, the mean and

. . . ~ L 3 _ ~2 _ UL 2D _
variance for eachvariable is computed as fic, = X', k P(C; = k) and 6¢, = X, (k —u¢)? P(C; = k).
The correlation Pcicjr where i # j is estimated either by the correlation matrix computed in the
observed data, or assembled from the observed marginaland pairwise common proba bilities:

ﬁClcz = [ZC.ZC.CiCjP(Cl = Cl"CZ = Cj)_zc.ciﬁ(cl = Ci)EC.CjP(CZ = C])]
i J i ]
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where ¢;,¢; € {1, ..., L;} x {1, ..., L, }. The estimated bivariate standard normal correlation p  canbe

obtained via a root finding algorithm, or, as is done in the R package orddata, the function canbe

evaluatedon a grid of points, and the value of p; , estimated via interpolation. As previously stated,

once an estimate of p; , is obtained, it is generally straight-forward to simulate data from the bivariate

standard normal distribution with correlation p ; and categorize the simulated variables at the

corresponding set of quantiles {qFCi(C): cef{l,..,L;}}.

To simulate multiple variables from multiple data partner sites, ananalyst prepares a programto
calculate the above univariate and bivariate summary statistics and deploys the program independently
at each data partner. Once all of the individual and pairwise summary statistics have been computed,
returned and reviewed, the pairwise correlation estimatesare combined into a single correlation matrix,

¥SiMm and used to simulate K variables, z;, wherei=1,...,K, from the multivariate standard normal
distribution. Each z; is then binned in the following way to form the categorical variable ciSim.

( 1 if ZiG[O'CIFCi(D)
2 if zi€lqrc ) AFc, )

Cisim = <

L; if ZiG[QFCL.(Li—l); chi(Li)]

ii. Chains of Regressions

Chains of regressions can be used to capture information about both marginaland conditional
distributions of binary and categorical covariates, and are simple to fit using most available statistical
software packages. Inthe section below, we describe a simple algorithm we implemented for fitting a
sequence of logistic regressions for predicting all binary covariates, and a sequence of multinomial
logistic regressions for predicting categorical covariates. The sequence of regression models captures
multivariate conditional relationships between binary and categorical covariates. The parameters
summarizing models fit tothe original subject level data can in turn be used to simulate subject level
data from either the binomial or multinomial distributions.

Binary Covariates

The equations below show a simple chain of logistic regressions using a set of binary covariates. The
regressions can be fit in any order and we suggest starting with the simpler models with fewer
covariatesthen ordering the covariates, B in ascending order by their estimated marginal means
(equivalent to the proportion). This ordering will yield better results in cases where some of the binary
covariates have means that are close to zero. Letting a,,, represent each of the parametersin models
with the nth variable as the outcome, where m=0,...,J-1andn=1,...,J, the regression chain would go as
follows:
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logit(B;1) = ay,
logit(B;;) = agy + a1,Byy
logit(B;3) = ag3 + ay3B;1 + az3B;;

J-1
logit(Bi]) = ay; + Z Ay Bim
m=1
In a setting where multiple data partners are contributing data, estimates of all the «a,,,,, are saved and
returned from each data partner. As described below, an analyst can then use these estimates to
simulate (subject level) binary covariates with similar characteristics.

Categorical Covariates

For categorical covariates with more than twolevels, we need information about the marginal
distribution of each covariate and the pairwise associations between covariates. For a set of K
categoricalvariablesC, (k = 1, ...,K) with L, levels in indexed by [, where |l =1, ..., L, the marginal
distribution is determined by the marginal probabilities P(C, = [). A simple way to quantify the
dependence of C, on other covariates is to fit a multinomial logistic regression (note the multinom
function in the nnet package in R was applied in the simulation) to C; conditional on all other covariates.
To operationalize this, we fit multinomial logistic regressions to each categorical variable in a chained
fashion as we cycle through the K categorical covariates. If present, binary covariates are included as
predictors in each model, and categorical covariatesused as outcomes are successively added as
predictors in each subsequent model. When fitting multinomial logistic regressions we obtain an
estimated linear predictor for each level of the categorical outcome variable. As an example, for two
categoricalvariables C; and C, with levels L, = 4 and L, = 5, respectively, and allowing the first level
to be the reference category, we would fit a chain of two multinomial logistic regressions as follows.
Letting C;j represent theith subject’s value for the kth covariate when have

[ J
level2 y& + Z 7 By
j=1

J
mlogit(C,, |Bi1,...,Bi1) = {level3 y§ + z 25 Bij
=1

JB
level4 vyg; + Zﬂj‘*lBij
\ =1
and
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. J
level2 y& +vi.CL+ Z 5 Bij
j=1
J
level 3 ¥5, +¥iCh +2 2 Bij
. ]=1
mloglt(Ciz|Ci1,Bl-1,...,Bl-]) = 9 J

level 4 yg, +v1,Ch + z B2 Bij
-

J
J
level 5 y§, +v3,Ch +Z B Bij
j=1

where Cfl is (L1-1)x1 vector of indicator variables representing C;; equal to level [, wherel =1, ..., L.
Y& is the intercept and ,lek is the coefficient for binary confounder j for the [ level of the multinomial

model for the kth categorical confounder. For the second model we further specify that ¥, is a 1x(L;-1)
vector of coefficients relating the first categorical variable in the chain to C;, . The model coefficients are
returned to be used in data simulation.

Note that a similar approach could be used to generate summary information for continuous covariates.
However, since in the current application we have no need to include continuous covariates we will not
cover the topic here.

After estimatesfor all a and B coefficients have been estimated and returned, an analyst can simulate a
set of correlated binary and categorical covariates of any sample size by looping through all of the
variables in the same order that the parameter estimates were generated and simulating subject-level
values as follows:

BSi™~ Bernoulli(P(B;,))
BS™~ Bernoulli(P(B;;|B;1))

Bl.S]im~ Bemoulli(P(Bi] |Bi1, e Bi]-l))
C5im~ Multinomial(1,P(Ci1|Biy, -, Bij-1))
Cim~ Multinomial(l,P(Ciz|Ci1'Bi1' ""Bif‘l))

Ciim~ Multinomial(1,P(Cix|Ciy, -, Cik—1,Bi1, -, Bij_1))
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b. Exposureand Propensity Score Model

To compute summary statistics which will allow simulation of a dichotomous exposure that depends on
measured variables, we fit a propensity score model, i.e., the probability of exposure given confounders,
using logistic regression with the exposure variable as the outcome regressed on a function of the binary
and categorical covariates. This model can be as flexible as required — perhaps including higher order
terms for single covariates, interactions between covariates, splines, etc. —and would typically include
only terms that are thought to be related either to both the outcome and the exposure, though
variables related only to the outcome can also be useful. The propensity score model takesthe form

lOgit(P(Xi|Zi)) =0'f(Z),

where Z; is a vector of covariates for subject i, 8 is a vector of coefficients and f(Z;) is a vector-valued
function of the observed covariates which may include interactions, polynomial functions and/or
regressions splines. The coefficients are retained and can be used by an analyst to compute the
probability of receiving treatment based on covariates. Once estimatesof 8 are returned from all data

partners subject-level exposure values, X7'™, canbe generatedas

X$tm~ Bernoulli(P(X;|Z;))

c. Time-To-Event

A basic summary of event and censoring times observed in the source data can be obtained by fitting
flexible parametric survival regressions for time-to-event and time-to-censoring. Here we briefly provide
the basic details of time-to-event data and connect them to the Weibull form of the parametric survival
model. The presentation is intended to give insight into the techniques that were used in this report
and to serve as a brief reference for an analyst who intends to conduct similar simulations.

The Weibull distribution for survival times, t, is defined by scale parameterA and shape parametery and
ty—le—)lt”

has probability density function f(t) = Ay . The survival function canbe defined in terms of

the density function as
SO=1-f; fwdu=e*""

The hazard function is related to the survival function in the following way

d
h(t) = Elog(S(t))

_f®
—S(b)

= Ayyty_l.
The cumulative hazard function can be written in terms of the hazard function or the survival function
H(t) = fot h(w)du, or
H(t) = —log(s()) = Art”.

To fit a model to observed survival data assuming a Weibull distribution with scale parameter A’fand
shape parameter y £, where the superscript E indicates that the model is for the outcome event as
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opposed toa censoring event (denoted with superscript C below), i.e., the event times, TiE, are
distributed as Weibull(A%,y%), and we typically fit the following model of the form

L
log(TE) = no +nX; + ' Z; + oW,

where W; follows the extreme value distribution. Parameter estimates for this model can be obtained
via maximum likelihood using pre-existing functions in most modern statistical packages, including R,
SAS and Stata. IfR or SAS is used for estimation, to estimate the hazard, survival and cumulative hazard
functions detailed above, we transform the coefficients and scale parameter from the Weibull
regression model to yield the Weibull scale and shape parameters/l'f = e~ (o+nxXitn'Zi) gngd yE = i In
this case we have chosen to estimate a constant shape parameter for all subjects, which can be thought
of as assuming that the distribution of event times across drug exposures and covariate groups has the
same shape, but that the conditional hazard, A’f, varies yielding longer or shorter times depending on
the observed covariate values. We could also allow o to vary by covariate strata, yielding stratum-

. p 1
specific shape parametersy,” = —
13

These parameter estimates can be used to simulate event times either by directly simulating using a pre-
existing function for generating random Weibull variables in existing statistical software, or by
simulating random values from a uniform distribution on the interval [0,1] and using the probability
integraltransform as outlined in Bender et al (2005)(28). For example, using the methodology discuss in

Bender et al, we can generate Weibull random variables Tl-ESim as
TEsim = (—log(U;)e (lo*n=Xi+n'20/7)°

where U; is a random draw from a uniform distribution on the interval [0,1]. The next section describes
similar models for estimating parameterstodefine several potential distributions for time-to-censoring,

TiCSim. Regardless of the censoring distribution used, when the parameters estimates from each data
partner are returned, an analyst can simulate Tl-ESim and TL-CSim and define the “observed” follow-up
time, TS'™, and event indicator, Y™, for each simulation as

sim — i Esim Csim
T; = min(T; T )
and

YiSim _ {0 if TiEsim < TiCsim’
1 otherwise.

d. Time-to-Censoring

We followed a similar methodology for modeling censoring times as was described in the section above.
We considered three different models for censoring times: i) simple, covariate independent, ii) simple,
covariate independent allowing for common discrete prescription lengths and iii) covariate adjusted.

i. Simple IndependentCensoring

For Simple Independent Censoring, we assumed that the censoring times followed a Weibull distribution
with shape parameter A¢ and scale parameter y¢, both independent of drug exposure and covariates.
Parameter estimates were obtained via maximum likelihood by fitting the following model for time-to-
censoring, T,

log(T,€) = vo + W,
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yielding A¢ = e~v0/7¢ and y¢ = i

ii. Simple and Discrete Independent Censoring

In some cases, there may be additional featuresof the observed censoring distribution that we wish to
mimic in our simulations. For example, there may be a high frequency of particular censoring times like
30, 60 or 90 days reflecting common prescription lengths for certain medications. These additional
features can be modeled as discrete times and combined with the continuous censoring distribution
based on frequency of occurrence. In this case we canadd an additional step to the modeling process
for censoring times. Instead of fitting the Weibull model to all of the censoring times, we first estimate
the probability of being censored at particulartimes, e.g. 30, 60 or 90 days, and then fit the Weibull
time-to-censoring model to the data excluding these times. When simulating data, prior to generating a
censoring time, we first take a draw from a multinomial distribution with a bin for each of the unique
times that were removed and one additional bin that indicates that the time should come from the
continuous distribution. Given the example mentioned above where 30, 60 and 90-day prescriptions are
notably more frequent in the context of the overall distribution of censoring times, we would draw a
random variable M; from the multinomial distribution with probability vector v given by

v=|P(1f=30),P(T =60),P(TF =0),1- Z P(1f =1t)
t€{30,60,90}

If M; takes on realizations m; €11, 2, 3, 4} we adhere to the following rule for assigning censoring times:

30, if m;=1
i 90, ifm; =3

Weibull(A*,y*), if m; =4,

where A* and y* are the shape and scale parametersfrom a time-to-censoring model fit to the data with
censoring times of 30, 60 and 90 days excluded.

iii. Covariate and Exposure Dependent Censoring

Another approach to flexibly model the censoring time is to allow it to depend on drug exposure and
covariates. Common survival model analysis techniques, such as Cox’s proportional hazards model,
assume that the censoring distribution is independent of the event distribution given covariates. In
practice censoring distributions are often highly relatedto exposures and covariates. For example, older
adults may be more likely to stop taking medication due toother comorbidities. Another important
example is when comparing newly marketed drugs to drugs that have been on the market for some time
(exposure of interest compared to a comparator). The new drugs are often more expensive and may
initially be prescribed in 30-day intervals while a comparator drug that may be on the market longer
may initially be prescribed in 90-day intervals. Therefore, censoring is more likely to occur earlier for
older adults and those on newer drugs. To allow for this complexity we assume a similar Weibull time-
to-censoring model as was detailed above for events:

10g(T€) = vy + Ve X; + V' Z; + W,
yielding A¢ = e~ (Vot Xt v'Z)/0 4p 4/ C = i Some statistical approaches may be able to account for

this type of covariate and exposure dependent censoring (e.g. Cox PH regression approaches which
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adjust for the covariatesand exposure in the model directly), however other approaches may or may
not be able to handle this assumption as well (e.g. approaches which do not directly condition on both
covariatesand exposure in the model as is the case with some propensity score based approaches).
Therefore, allowing for data to be simulated with this flexibility may be important. In our simulation
study in Section IV, we will compare these three censoring approaches (simple independent censoring,
discrete and simple independent censoring, and covariate and exposure dependent censoring) to assess
performance. Note that other censoring mechanisms such as those that combine discrete censoring and
covariate and/or exposure dependent censoring are also easily implemented in our current simulation
framework. For simplicity, we only present the three general approaches since they cover the most
common scenarios typically observed in our data setting. Ultimately, we did not observe large
differences between censoring approaches adding more nuanced methods.

e. Simulate Site Data Given Summary Statistics

Given the summary information from each site, the process of data simulation for a given site follows a
similar sequence to that used to collect summary statistics. Specifically if you simulate covariatesusing
the multivariate normal thresholding approachyou first begin with the matrix of common probabilities
or correlation matrix and means as outlined in Section II.B.2.a.ifrom your dataset. Giventhis datayou
calculate the normal distribution pz , and quantile cut-offs {qrc): c€ {1, ..., L}}. Then simulate
continuous covariates from a multivariate normal distributed with correlation p; ;, and use the quantile
cut-offs to derive the simulated binary and categorical covariates.

After simulating binary and categorical covariates, the site-specific propensity score model is used to
simulate exposure, X;, which is generated from a Bernoulli distribution with probability P(X;) =
1+ e‘elzi)‘l. After simulating the binary, categorical and exposure variables, we can then simulate
corresponding event and censoring times using the parametersfrom the parametric survival models
that were fit at eachsite. For each subject record, we simulate both an event and a censoring time.
Given these two times we take the minimum, i.e., TS'™ = min(T;FSi™, TLStm), |f TESIm < TCSIM then
the event indicator, Y;, equals 1, and otherwise Y; = 0. In Section 11.C.1 we will detail the summary
information and simulation process for a specific data example.

When actually conducting a simulation evaluation one would like not only to mimic actual data, but also
change certain parameters of interest such as the strength of the relationship between the exposure of
interest and outcome. This would typically be done by maintaining observed associations between
covariatesand outcome in the dataset and simply changing 7, to the desired log(Hazard Ratio)
comparing exposed to unexposed. Since data is simulated within site, if the interest is in assessing
performance of methods when site heterogeneity exists, then 7, must be different for each site, i.e., an
interaction between treatment and site must be created.

Given the summary information the researcher has the ability to change any parameter of interest to
explore a large range of questions easily (e.g. 1: methods performance for varying confounding
relationships (change the propensity model coefficients or covariate outcome coefficients), 2: methods
performance when creating site heterogeneity (differentially changing the relationship between
exposure and confounder across sites), or 3: methods performance when missing confounders in the
model dependent on confounder prevalence (miss-specify the model dropping different confounders
from the method to see if it makes a difference)). Therefore, this new approach allows one to mimic
realistic data situations, but does not constrain the types of questions to be asked.

Sentinel Methods Report -13- Safety Signaling Methods for Survival
Outcomes to Control for Confounding
in the Mini-Sentinel Distributed Database



Sentinel,

I
3. Bootstrap as Gold Standard

Since the purpose of this exercise is to be able to simulate data that mirrors real data, one wayto
evaluate the effectiveness of the proposed simulation methods is to compare them to the empirical
distribution of the data that we are attempting to mimic. We can accomplish this by using bootstrap
sampling from the subject level data as a kind of gold standard. Comparisons cantake place on a
number of dimensions but will focus on marginaland pairwise correlations.

C. ASSESSMENT OF DIFFERENT DATA SIMULATION APPROACHES

In this simulation assessment, we compare data generated using bootstrap sampling of subject-level
covariates, drug exposures, follow-up times and indications of angioedema to our proposed approach of
using summary information only. In what follows we detail the test data used and the summary statistics
relatedto each type of data and compare the results of analyses performed on simulated data with
those obtained from analyzing parallel bootstrap samples.

1. Example Data

Data for this example was taken from a cohort study conducted within Sentinel to evaluate the relative
risk of angioedema between users of ACE-inhibitors (ACEI) and a select group of beta-blocker (BB) users.

Table 1. Sample characteristics by site (n=150,000)

Variable Site 1 Site 2 Site 3 Site 4 Site 5
Sample Size 48127 19275 33399 45012 4187
Age
30-44 (Ref) 28.1 22.3 9.5 22 25.4
45-54 28.5 24.3 11.8 24.3 30
55-64 26.7 24.9 15.5 25.8 31.8
265 16.7 28.4 63.2 27.9 12.8
Sex
Male (Ref) 50.8 48.8 48.6 51.1 51
Female 49.2 51.2 51.4 48.9 49
Comorbidity Score
<0 (Ref) 78.9 77.5 63.9 75.7 77.2
1 21.1 22.5 36.1 24.3 22.8
Emergency Visits
0 (Ref) 80.7 80.9 84.4 87.1 78.8
21 19.3 19.1 15.6 12.9 21.2
Hospital Stays
0 (Ref) 89.9 90.3 84 85.6 89.3
21 10.1 9.7 16 14.4 10.7
Year
2008 13.2 26.5 21.5 23.5 21.5
2009 27 22.7 21.2 21.8 22.2
2010 23.1 19.3 19.4 19.5 19.2
2011 19 16.3 18.8 18.4 19.2
2012 17.8 15.2 19.2 16.8 17.8
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Approximately 2.5 million records were available from the original inquiry, representing five data
partners — referred to in what follows as sites 1-5. In all, the data included information on 1.4 million
ACEI users (56%) and 1.1 million BB users. The proportional data contributions of each of the five sites
was 32%, 13%, 23%, 30%, and 2.5% of the total sample, respectively. To ensure that meaningful results
could be generated within a reasonable time frame, we reduced the computational burden by taking a
simple random sample of 6% of the 2.5 million records, or 150,000 subjects, as a test cohort. This
randomly sampled cohort included subject-level covariate values, drug exposures, follow up times and
indications of angioedema or censoring. The sample comprises 84,351 ACE-inhibitor users and 65,649
beta-blocker users and includes three binary covariates (sex; number of emergency visits (EVs) in the
last 180 days: 0, 1+; and number of inpatient hospital stays (HSs) in the last 180 days: 0, 1+) and three
categorical covariates (Age: 18-44, 45-54, 55-64, 65-99; Comorbidity Index:< 1, >1;and Year: 2008,
2009, 2010, 2011, 2012). Summaries of covariate distributions by site are presented in Table 1.

In addition to site, Table 2 further stratifies the sample by drug exposure and contains sample sizes,
counts of angioedema events, rates of angioedema per thousand person-years and average follow-up
days.

Table 2. Sample size, average* person-days of follow-up, number of events and event rates per 1000
person-yearsby site and drug exposure (n=150,000)

Site Drug N Average Person Time | Events Rates
SITE1 BB 21080 106.9 11 1.78
ACEI 27047 128.1 51 5.38
SITE 2 BB 8435 151.7 4 1.14
ACEI 10840 180.5 22 4.11
SITE3 BB 13881 130.7 6 1.21
ACEI 19518 154.2 35 4.25
SITE4 BB 20358 118.6 11 1.66
ACEI 24654 144.5 40 4.10
SITES BB 1895 116 0 0.00
ACEI 2292 147.5 6 6.48

*Average is sum of person-time acrossallsubjects divided by number of subjects N

Overall, there were 186 angioedema events in the test sample with unadjusted ratesof 4.6 per 1,000
and 1.5 per 1,000 person-years among ACEl users and BB users, respectively. Variationin the rate of
angioedema across data partner sites was small, with the exception of site 5 where only six eventsin
total were sampled, all of which were in the ACE-inhibitor group.

As described in Section II.B above, we cover two different ways of simulating correlated binary and
categorical covariates: multivariate normal thresholding and regression chains. For multivariate normal
thresholding, we need estimates of the common probabilities. For chain regressions, we need
coefficients from sequential chains of logistic and multinomial regressions. The site-specific marginal
probability estimatesfrom Table 1 can be used to estimate the means and the correlation can either be
computed directly by treating the variables as continuous data, or calculated using common
probabilities. As an example, Table 3 shows the site-averaged matrix of common probabilities (reference
level excluded for space). The pairwise Pearson correlation matrices of the covariatesat eachsite are
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shown in Appendix Table B 1. The computed model coefficients for chain of regressions are shown in
TableB 2 and Table B 3.

To generate drug exposure data, we use propensity score models fit separately at each data partnersite
to predict the probability of exposure given simulated covariates, generating an exposure

-1
X;~Bernoulli ((1 + e‘ZiQS) ) for each subject. In this example, we estimated a propensity score

model for exposure to ACEls versus BBs with the same functional form at each of the five sites. There
are a variety of ways to increase the complexity of the propensity score models if needed, including
fitting different models at each data partner, specifying higher order terms or interactions, or using data
driven model-selection algorithms. Odds ratios, standard errors, and c-statistics from the site-specific
propensity score models are displayed in Table 4.

Table 3. Observed probabilities* over data partner sites (n=150,000; reference levels excluded)

1+HS [ 1+EV | 1+CS | SexF | 45-54 | 55-64 65+ | 2009 ( 2010| 2011| 2012
1+ HS 12.7 5.4 8.6 6.5 2.0 2.5 6.1 2.9 2.5 2.3 2.3
1+ EV 5.4 16.6 7.6 8.7 3.6 3.5 5.4 3.8 3.4 3.1 3.1
1+ CS 8.6 7.6 25.6 13.3 4.0 5.2 12.6 5.8 5.2 4.8 4.8
SexF 6.5 8.7 13.3 ]| 49.9 11.0 11.5 16.7 11.6 10.3 9.3 8.6
45-54 2.0 3.6 4.0 11.0| 23.0 0.0 0.0 5.7 4.9 4.1 3.7
55-64 2.5 3.5 5.2 11.5 0.0 23.9 0.0 5.8 5.0 4.3 4.1
65+ 6.1 5.4 12.6 16.7 0.0 00| 31.8 6.8 6.3 6.1 6.0
2009 2.9 3.8 5.8 11.6 5.7 5.8 6.8| 234 0.0 0.0 0.0
2010 2.5 3.4 5.2 10.3 4.9 5.0 6.3 0.0] 20.6 0.0 0.0
2011 2.3 3.1 4.8 9.3 4.1 4.3 6.1 0.0 0.0 18.4 0.0
2012 2.3 3.1 4.8 8.6 3.7 4.1 6.0 0.0 0.0 0.0 17.5

*Probabilities in diagonal cells are frequency of variables (%). Probability in each off diagonalcell is the frequency
(%) of co-occurrence of the corres ponding row and column binaryvariables.

Table 4. Observed odds ratios from site-specific propensity score models

Site 1 Site 2 Site 3 Site 4 Site 5
OR SE OR SE OR SE OR SE OR SE
Intercept 1.39 ]| 0.044| 1.46 | 0.063 | 1.46 [ 0.064 | 1.39 | 0.041 | 1.24 0.12
Age
45-54 1.64 | 0.041| 1.88|0.083 | 1.6 | 0.079 1.58| 0.045| 1.95| 0.171
55-64 1.67 | 0.043 | 1.68 ] 0.073 | 1.56 | 0.073 [ 1.53 | 0.043 | 1.94 [ 0.168
65+ 1.28 | 0.038 | 1.31] 0.056 | 1.29 | 0.051 | 1.26| 0.036| 1.76 | 0.198
1+ CS 0.53 | 0.013 | 0.56 | 0.022 | 0.65 | 0.017 | 0.54 | 0.014 | 0.54 | 0.045
1+ EV 0.8 0.021| 0.74]0.032 | 0.8 | 0.025( 0.84| 0.025| 0.67 [ 0.059
1+ HS 0.54 | 0.02]0.52|0.031| 0.5]0.016]| 0.51] 0.016| 0.5| 0.064
SexF 0.61]0.012] 0.64| 0.019 | 0.83 | 0.019] 0.64 | 0.013 | 0.56 | 0.037
Year
2009 1.16 | 0.037 | 1.04 | 0.045 | 1.14 | 0.04 [ 1.08 | 0.031| 1.11| 0.109
2010 1.14 ] 0.037| 1.03|0.047 [ 1.12 | 0.04 | 1.13| 0.034 | 1.14| 0.116
2011 1.09 | 0.037 | 0.96 | 0.045 | 1.06 | 0.038 | 1.12| 0.034 | 1.13| 0.116
2012 1.02 | 0.035| 0.93]0.045|1.11 | 0.04 | 1.03] 0.032| 1.05| 0.109
C-stat 0.64 0.64 0.61 0.64 0.66
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For time-to-event we utilize parametric survival models assuming an underlying Weibull distribution (discussed in Section I1.B). The Weibull
distribution is extremely flexible and can accommodate a wide variety of data. As with propensity score estimation there are a variety of choices
that can be made when specifying models for the time-to-event outcomes. For simplicity, we have chosen to again fit models with the same
functional form separately at each data partner. Hazardratios, standard errors, and 95% confidence intervals from these models are tabulatedin
Table 5. For comparison with the more commonly used semi-parametric frameworkfor analyzing survival data, Table 6 displays results from
fitting the standard Cox proportional hazards model to the time-to-angioedema data at each data partner.

Sentinel,

Table 5. Observed Weibull hazard ratios, standard errors and 95% confidence interval estimates for time-to-angioedema by data partner

(n=150,000)

Site 1 Site 2 Site 3 Site 4 Site 5

HR | SE 95% Cl HR | SE 95% Cl HR | SE 95% Cl HR | SE 95%Cl | HR | SE 95% Cl
ACEI 33 (11| (1.7,6.6) [3.8]2.2|(1.2,11.5) |3.8|1.7]| (1.6,9.3) [3.5]|1.3| (1.7, 7.1) | Inf | Inf Inf Inf
45-54 1.7 1 0.7 ] (0.8,3.6) |0.4]0.2 (0.1, 1.2) 0.6 |0.5| (0.1,3.2) |0.7]0.3](0.3,1.6) | 0.7 | 1.0 (0.0, 11.6)
55-64 1.6 | 0.6 | (0.7,3.4) |0.8]0.4](0.3, 2.1) 0.8 |10.6| (0.2,3.3) |0.6]0.3|(0.3,1.4) |1.6]1.9] (0.2, 16.0)
65+ 1.1 05] (0.4,2.7) |0.4]0.3](0.1,1.4) 1.1 {0.7| (0.3,3.8) [0.6/0.3]|(0.3,1.4) [0.9]|1.4] (0.1, 16.0)
1+ CS 19| 06| (1.0,3.4) |1.3]0.7 (0.5, 3.7) 1.5]|0.5| (0.8,3.0) [1.4]0.5| (0.7, 2.7) |10.2] 9.5| (1.7, 62.5)
1+ EV 1.2 104 ] (0.6,2.5) | 1.6 0.9 (0.6, 4.5) 1.4 |0.6| (0.6,3.1) [1.4|0.5] (0.7,2.9) [2.3|2.4]| (0.3, 18.8)
1+ HS 0.4] 03| (0.1,1.6) [0.4|0.5](0.0, 3.6) 0.6 ([0.3| (0.2,1.8) |2.2|0.8]|(1.0,4.5) |0.7|1.0] (0.0, 11.2)
SexF 1.5]1 0.4 ] (0.9,2.5) |0.7]0.3](0.3, 1.6) 0.7 10.2] (0.4,1.3) |2.0]0.6] (1.1,3.5) |0.7]0.6] (0.1, 3.9)
2009 2312 (0.8,6.7) [0.5]0.3](0.2,1.7) 1.2 10.6] (0.4,3.2) [1.6]0.8]| (0.6,4.2) [ Inf | Inf Inf Inf
2010 1.6 09| (054.9) |1.1]0.5](0.4, 2.8) 0.7 10.4| (0.2,2.3) |2.1]1.0/ (0.8, 5.3) | Inf | Inf Inf Inf
2011 19| 11| (0.6,5.9) |0.4]0.3](0.1,1.7) 1.7 |0.8| (0.7,4.4) [1.7|0.9] (0.7, 4.6) | 0.0 0.0| (0.0, 0.0)
2012 3.0 17| (1.0,9.0) [ 0.8]0.5]|(0.2, 2.6) 1.1 |0.6| (0.4,3.1) [2.0]1.0]| (0.7,5.2) [88.3] Inf Inf Inf
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Table 6. Observed Cox PH hazard ratios, standard errors and 95% confidence interval estimates for time-to-angioedema by data partner

Site 1 Site 2 Site 3 Site 4 Site 5

HR | SE 95% Cl HR | SE 95% Cl HR | SE 95% Cl HR | SE 95% Cl HR | SE 95% Cl
ACEI 34| 1.2 | (1.7,6.6) |3.8]21| (1.3,11.4) |3.8|1.7| (1.6,9.2) |3.5]|1.2| (1.8,7.0) | Inf | Inf| (0.0, Inf
45-54 1.7 0.7 | (0.8,3.6) [0.4]0.2| (0.1,1.2) 0.605]| (0.1,3.2) [0.8]|0.3| (0.3,1.7) (0.8 |1.1| (0.0, 12.6)
55-64 1.6 | 0.6 | (0.8,3.5) [0.8]|0.4] (0.3,2.2) 0.8|0.6]| (0.2,3.3) |0.7]0.3]| (0.3,1.5) |1.7]2.0| (0.2,17.3)
65+ 1.1 0.5 | (0.4,2.7) [0.5]|0.3]| (0.1, 1.4) 1.1/0.7| (0.3,3.8) |{0.7|0.3| (0.3,1.4) (1.1 1.7 | (0.1, 19.6)
1+ CS 1.9 0.6 | (1.0,3.4) [1.3]|0.7| (0.5,3.7) 1.5|05| (0.8,3.0) |1.4]0.5| (0.7,2.7) |9.0 8.2 (1.5, 53.3)
1+ EV 1.2 | 0.4 | (0.6,2.5) [1.6]|0.8| (0.6,4.5) 14|06 (0.6,3.1) {1.4|0.5| (0.7,2.9) (2.3 2.4 (0.3, 18.3)
1+ HS 04| 0.3 ] (0.1,1.5) |0.4]0.5]| (0.0,3.6) 06|03]| (0.2,1.8) |2.1]|08]| (1.0,4.4) |0.8]1.1| (0.1,11.8)
SexF 1.5 0.4 | (0.9,2.5) [0.7]|0.3]| (0.3,1.6) 0.7|0.2]| (0.4,13) |2.0]06] (1.1,3.5) |0.7 |0.6| (0.1, 4.0)
2009 23| 1.2 | (0.8,6.7) |0.5[0.3| (0.2,1.7) 1.210.6| (0.4,3.2) |1.6[0.8| (0.6,4.2) | Inf | Inf | (0.0, Inf
2010 1.6 09 | (0.5 4.9) [1.1|0.5]| (0.4,2.8) 0.710.4] (0.2,2.3) |2.1]1.0]| (0.8,5.3) | Inf | Inf| (0.0, Inf
2011 19| 1.1 | (0.6,5.9) [0.4]0.3| (0.1,1.7) 1.710.8| (0.7,4.4) | 17|09 (0.7,4.6) |0.9 | Inf| (0.0, Inf
2012 3.0 1.7 | (1.0,9.0) |0.8|0.5]| (0.2,2.6) 1.1]106| (0.4,3.1) |2.0]|1.0| (0.7,5.1) |1.0 | Inf| (0.0, Inf
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With respect to the censoring distribution in the sample data, we explore three different formulations.
In the first, and most basic scenario we assume that each subject’s censoring time follows the exact
same distribution regardless of their covariate values or exposure status (Simple Independent
Censoring). Our summary information for this case comes from site-specific Weibull survival models
with censoring as the outcome and only an intercept and a scale parameter specified. The results from
fitting these models at eachsite are shown in Table 7. The second censoring model also assumes simple
censoring but allows simulated data to reflect a small number of extremely common prescription times,
e.g.30o0r 90 days (Discrete and Simple Independent Censoring). Inthis case, we specified that the three
most common exposure times, or modes of the treatment period distribution, were 44, 104 and 365
days. These times correspond to prescriptions of 30 and 90 days with a 14-day post-exposure allowance
and the administrative censoring time of 365 days (Table 8). As described in the methods section we
then implemented a two-step sampling scheme, where for each subject a draw is first taken from a
multinomial distribution with the result indicating that the censoring time should either be one of the
three most common times or should be sampled from the simple independent censoring model.
Parameters from fitting the discrete and simple independent censoring model to data where the three
most common episode lengths are removed is shown in Table 9. The third censoring model allows
censoring to depend on the same set of covariates and exposures (Covariate and Exposure Dependent
Censoring). Results from the site-specific, covariate and exposure adjusted Weibull time-to-censoring
models are shown in Table 10.

Table 7. Observed intercept and scale term fromsite-specific simple independent censoring models
(site-specific Weilbull time-to-censoring model)

Site 1 Site 2 Site 3 Site 4 Site 5
Intercept 4.83 5.22 5.03 4.94 4.95
Scale 0.88 0.68 0.85 0.87 0.87

Table 8. Three most common observed follow up times in days and corresponding proportion ofall
censoring times by data partner

Site 1 Site 2 Site 3 Site 4 Site 5
Days| % | Days| % |Days| % |Days| % | Days| %
44 | 336 44 | 57 | 44 |251| 44 |30.4( 44 | 29.7
104 | 5.8 | 114 |37.5| 104 [ 9.5 | 104 | 59 | 104 | 4.8
365 | 10.7 | 365 | 18.6 | 365 | 16.6 | 365 | 14.3| 365 | 14.3

Table 9. Observed intercept and scale term fromsite-specific simple and discrete censoring model*
with common times removed

Site 1 | Site 2 | Site3 | Site4 | Site 5
Intercept 4.85| 5.04 4941 490 | 4.90
Scale 0.78 | 0.78 0.77| 0.76 | 0.75

*Note: A two-step censoring model: (1) estimate the probability of being censored at 44, 104, and 365
(values shown in Table 8), and (2) fit the site-specific Weibull time-to-censoring model to the data
excluding these times.
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Table 10. Observed hazard ratios, standard errors and 95% confidence intervals from site-specific Weibull time-to censoring model
conditional on covariates

Site 1 Site 2 Site 3 Site 4 Site 5
HR | SE 95% Cl HR | SE 95% Cl HR | SE 95% CI HR | SE 95% Cl HR | SE 95% Cl

ACEI 0.83 (0.01| (0.82,0.85) |0.82| 0.01 | (0.80, 0.85) |0.85|0.01(0.83, 0.86) |0.81(0.01/(0.80,0.83) | 0.81|0.03((0.76, 0.86)
1+ HS 1.00 |0.02((0.97,1.04) [1.04| 0.03 | (0.98,1.10) |1.08|0.02((1.05, 1.12) [1.05|0.02{(1.02,1.08) | 1.16 | 0.07|(1.03, 1.30)
1+ EV 1.07 {0.01((1.04,1.10) |1.06| 0.02 | (1.01, 1.10) |1.09|0.02|(1.06, 1.13) [1.09|0.02(1.06,1.12) | 0.97 | 0.04 |(0.89, 1.06)
1+ CS 1.03 |0.01((1.01, 1.06) [1.05( 0.02 | (1.02,1.09) |1.04|0.01((1.01, 1.06) [1.01|0.01{(0.99,1.04) | 1.04 | 0.04|(0.96, 1.13)
SexF 1.03 ({0.01((1.01,1.05) |1.01| 0.01 | (0.99, 1.04) |1.00|0.01|(0.98, 1.03) [1.02|0.01/(1.00,1.04) | 1.03 | 0.03((0.97, 1.10)
Age

45-54 0.8110.01 (0.79,0.83) (0.83| 0.02 | (0.80,0.87) |0.83|0.02((0.79, 0.87) |0.82|0.01((0.80,0.84) | 0.82 | 0.03|(0.76, 0.90)
55-64 0.74 10.01| (0.72,0.76) |0.75| 0.02 | (0.72,0.79) |0.74|0.02|(0.71, 0.78) |0.76|0.01|(0.74,0.78) | 0.72 | 0.03 [(0.66, 0.78)
65+ 0.66 (0.01| (0.64,0.68) |0.72| 0.02 | (0.69, 0.75) |0.67|0.01|(0.65, 0.70) |0.69|0.01|(0.67,0.71) | 0.76 | 0.04 [(0.68, 0.84)
Year

2009 1.02 |0.02((0.99, 1.05) {0.99( 0.02 | (0.95, 1.03) |0.95|0.02 [(0.92, 0.98) [0.99|0.01{(0.96,1.01) | 0.94 | 0.04|(0.86, 1.03)
2010 1.00 |0.02((0.97,1.03) [0.99( 0.02 | (0.95, 1.04) |0.93|0.02((0.90, 0.96) [0.96|0.01{(0.93,0.99) | 0.94 | 0.05|(0.86, 1.04)
2011 0.99 (0.02| (0.96, 1.02) |0.96| 0.02 | (0.92, 1.01) [0.89|0.02|(0.86, 0.92) |0.96|0.01((0.94,0.99) | 0.94 | 0.05 [(0.85, 1.03)
2012 0.97 10.02| (0.94, 1.00) [1.04( 0.02 | (1.00, 1.09) |0.89|0.02((0.86, 0.92) |0.97|0.01((0.94,1.00) | 1.43 |0.07|(1.30, 1.58)
Sentinel Methods Report -20- Safety Signaling Methods for Survival

Outcomes to Control for Confounding
in the Mini-Sentinel Distributed Database




Sentinel,

2. Performance of Covariate Generation Procedures

As an informal way of comparing covariates generated using multivariate normal thresholding or chain regression with those obtained from
subject-level bootstrap samples, we summarize the means and standard errors of the simulation distributions of the pooled-data common
probabilities in Table 11, Table 12, and

Sentinel Methods Report -21- Safety Signaling Methods for Survival
Outcomes to Control for Confounding
in the Mini-Sentinel Distributed Database



Table 13 (observed probability matrix shown in Table 3). Inspecting these tables, we can see that the marginal probabilities and the common
probabilities are in very good agreement across data generation methods.

Table 11. Simulation probabilities* using multivariate normal thresholding (n=150,000, 5,000 simulations)

Sentinel’

1+ HS 1+ EV 1+ CS SexF 45-54 55-64 65+ 2009 2010 2011 2012

% SE | % SE| % SE| % SE| % SE| % SE| % SE | % SE| % SE | % SE | % SE
1+ HS |12.70 (0.09)| 5.40 (0.06) 8.60 (0.07)] 6.50 (0.06)| 2.40 (0.04)| 3.00 (0.04)| 5.60 (0.06)| 2.90 (0.04)| 2.60 (0.04)| 2.30 (0.04)] 2.20 (0.04)
1+EV | 5.40 (0.06)[16.60 (0.10)] 7.60 (0.07)| 8.80 (0.07)[ 3.90 (0.05)[ 4.00 (0.05)[ 4.90 (0.06) 3.90 (0.05)[ 3.50 (0.05)[3.10 (0.04) 3.10 (0.04)
1+CS_ [ 8.60 (0.07)[ 7.60 (0.07)[25.60 (0.11)[13.30 (0.09)[ 4.70 (0.05)[ 6.00 (0.06)[11.80 (0.08)[ 5.80 (0.06)[ 5.20 (0.06) 4.80 (0.06)[ 4.80 (0.06)
SexF | 6.50 (0.06)]8.80 (0.07)[13.30 (0.09)[49.90 (0.13)[11.30 (0.08)] 11.90 (0.08)|16.40 (0.09)[11.70 (0.08)[ 10.30 (0.08)] 9.20 (0.07) 8.70 (0.07)
45-54 | 2.40 (0.04)[3.90 (0.05)| 4.70 (0.05)[11.30 (0.08)[23.00 (0.11)] 0.00 (0.00)] 0.00 (0.00)| 5.50 (0.06)| 4.80 (0.06)|4.20 (0.05)| 3.90 (0.05)
55-64 | 3.00 (0.04)[4.00 (0.05)] 6.00 (0.06)[11.90 (0.08)] 0.00 (0.00)[23.90 (0.11)] 0.00 (0.00)| 5.70 (0.06)| 5.00 (0.06)|4.40 (0.05)| 4.10 (0.05)
65+ | 5.60 (0.06)[4.90 (0.06)11.80 (0.08)|16.40 (0.09)| 0.00 (0.00)] 0.00 (0.00)[31.80 (0.11)] 7.10 (0.06)| 6.40 (0.06)|6.00 (0.06)| 6.00 (0.06)
2009 | 2.90 (0.04)[3.90 (0.05)[ 5.80 (0.06)[11.70 (0.08)] 5.50 (0.06)| 5.70 (0.06)] 7.10 (0.06)[23.40 (0.11)] 0.00 (0.00)| 0.00 (0.00)| 0.00 (0.00)
2010 [ 2.60 (0.04)[3.50 (0.05)[ 5.20 (0.06){10.30 (0.08)] 4.80 (0.06)| 5.00 (0.06)[ 6.40 (0.06)| 0.00 (0.00)|20.60 (0.10)[ 0.00 (0.00)[ 0.00 (0.00)
2011 | 2.30 (0.04)[3.10 (0.04)] 4.80 (0.06)] 9.20 (0.07) 4.20 (0.05)] 4.40 (0.05) 6.00 (0.06)] 0.00 (0.00)] 0.00 (0.00)|18.40 (0.10)] 0.00 (0.00)
2012 | 2.20 (0.04)[3.10 (0.04)[ 4.80 (0.06)[ 8.70 (0.07)[ 3.90 (0.05)[ 4.10 (0.05)[ 6.00 (0.06)] 0.00 (0.00)] 0.00 (0.00)| 0.00 (0.00)[17.50 (0.10)

*In diagonal cells, %is the frequencyof variables averaged overall simulations, SEis the standard errors of these frequencies across all simulations. In off-
diagonal cells, % is P the frequency (%) of co-occurrence of the corresponding row and columnbinary variables averaged over all simulations, SEis the standard
error of these frequencies across all simulations.
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Table 12. Simulation probabilities* using regression chains (n=150,000, 5,000 simulations)

Sentinel’

1+ HS 1+ EV 1+ CS SexF 45-54 55-64 65+ 2009 2010 2011 2012

% SE | % SE| % SE| % SE| % SE| % SE| % SE| % SE| % SE| % SE| % SE
1+ HS [12.70 (0.09)] 5.40 (0.06)| 8.60 (0.07)] 6.50 (0.06)] 2.00 (0.04)] 2.50 (0.04)] 6.10 (0.06) 2.90 (0.04)] 2.50 (0.04)| 2.30 (0.04)| 2.30 (0.04)
1+EV | 5.40 (0.06)[16.60 (0.10)] 7.60 (0.07)] 8.80 (0.07)[ 3.60 (0.05)] 3.50 (0.05)| 5.40 (0.06)] 3.80 (0.05)[ 3.40 (0.05)] 3.10 (0.04)] 3.10 (0.04)
1+ CS | 8.60 (0.07)] 7.60 (0.07)[25.60 (0.11)[13.30 (0.09)] 4.00 (0.05)] 5.20 (0.06)[12.60 (0.08)] 5.80 (0.06)] 5.20 (0.06)| 4.80 (0.06)| 4.80 (0.05)
SexF | 6.50 (0.06) 8.80 (0.07)[13.30 (0.09)[49.90 (0.13)[11.00 (0.08)[11.50 (0.08)[16.70 (0.09)[11.60 (0.08)[10.30 (0.08)| 9.30 (0.07) 8.60 (0.07)
4554 | 2.00 (0.04)] 3.60 (0.05)| 4.00 (0.05)[11.00 (0.08)23.00 (0.11)] 0.00 (0.00)] 0.00 (0.00)] 5.70 (0.06)| 4.90 (0.06)] 4.10 (0.05)] 3.70 (0.05)
55-64 | 2.50 (0.04)]3.50 (0.05)] 5.20 (0.06)[11.50 (0.08)] 0.00 (0.00)[23.90 (0.11)] 0.00 (0.00)| 5.80 (0.06)] 5.00 (0.06)| 4.30 (0.05)] 4.10 (0.05)
65+ | 6.10 (0.06)] 5.40 (0.06)[12.60 (0.08)[16.70 (0.09)] 0.00 (0.00)| 0.00 (0.00)[31.80 (0.11)] 6.80 (0.07)] 6.30 (0.06)| 6.10 (0.06)| 6.00 (0.06)
2009 | 2.90 (0.04)] 3.80 (0.05)] 5.80 (0.06){11.60 (0.08)] 5.70 (0.06)] 5.80 (0.06)| 6.80 (0.07)[23.40 (0.11)] 0.00 (0.00)| 0.00 (0.00)| 0.00 (0.00)
2010 [ 2.50 (0.04)[ 3.40 (0.05)[ 5.20 (0.06)[10.30 (0.08)[ 4.90 (0.06)] 5.00 (0.06)| 6.30 (0.06) 0.00 (0.00)[20.60 (0.10)[ 0.00 (0.00) 0.00 (0.00)
2011 | 2.30 (0.04)[ 3.10 (0.04)] 4.80 (0.06)] 9.30 (0.07)[ 4.10 (0.05)] 4.30 (0.05)| 6.10 (0.06)] 0.00 (0.00)] 0.00 (0.00)18.40 (0.10)] 0.00 (0.00)
2012 | 2.30 (0.04)[ 3.10 (0.04)[ 4.80 (0.05)] 8.60 (0.07)[ 3.70 (0.05)] 4.10 (0.05)| 6.00 (0.06)] 0.00 (0.00)| 0.00 (0.00)[ 0.00 (0.00)[17.50 (0.10)

*In diagonal cells, % is the frequencyof variables averaged overall simulations, SEis the standard errors of these frequencies across allsimulations. In off-
diagonal cells, %is P the frequency (%) of co-occurrence of the corresponding row and column binary variables averaged over all simulations, SEis the standard
error of these frequencies across all simulations.
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Table 13. Probabilities in datasets simulated usingbootstrap sampling(n=150,000, 5,000 simulations)

Sentinel’

1+ HS 1+EV 1+ CS SexF 45-54 55-64 65+ 2009 2010 2011 2012

% SE| % SE| % SE| % SE| % SE| % SE| % SE| % SE| % SE| % SE | % SE
1+ HS |12.70 (0.08)] 5.40 (0.06)| 8.60 (0.07)| 6.50 (0.06)| 2.00 (0.04)] 2.50 (0.04)] 6.10 (0.06)| 2.90 (0.04)] 2.50 (0.04)| 2.30 (0.04)| 2.30 (0.04)
1+EV | 5.40 (0.06)16.60 (0.10)] 7.60 (0.07)] 8.80 (0.07)] 3.60 (0.05)] 3.50 (0.05)| 5.40 (0.06)| 3.80 (0.05)[ 3.40 (0.05)[ 3.10 (0.04)] 3.10 (0.05)
1+CS | 8.60 (0.07)] 7.60 (0.07)[25.60 (0.11)[13.30 (0.09)| 4.10 (0.05)] 5.20 (0.06)[12.60 (0.08)| 5.80 (0.06)| 5.20 (0.06)| 4.80 (0.06)| 4.80 (0.05)
SexF | 6.50 (0.06)[ 8.80 (0.07)]13.30 (0.09)[49.90 (0.13)[11.00 (0.08)[11.50 (0.08)|16.70 (0.09)[11.60 (0.08)]10.30 (0.08)| 9.30 (0.08) 8.60 (0.07)
45-54 | 2.00 (0.04)] 3.60 (0.05)] 4.10 (0.05)[11.00 (0.08)[23.00 (0.11)] 0.00 (0.00)] 0.00 (0.00)| 5.70 (0.06)| 4.90 (0.06)] 4.10 (0.05)| 3.70 (0.05)
55-64 | 2.50 (0.04)] 3.50 (0.05)] 5.20 (0.06)[11.50 (0.08)] 0.00 (0.00)[23.90 (0.11)] 0.00 (0.00)] 5.80 (0.06)| 5.00 (0.06) 4.30 (0.05)] 4.10 (0.05)
65+ 6.10 (0.06)] 5.40 (0.06)[12.60 (0.08)/16.70 (0.09)] 0.00 (0.00)| 0.00 (0.00)|31.80 (0.11)] 6.80 (0.06)| 6.30 (0.06) 6.10 (0.06)| 6.00 (0.06)
2009 | 2.90 (0.04)] 3.80 (0.05)] 5.80 (0.06)[11.60 (0.08)| 5.70 (0.06)| 5.80 (0.06)| 6.80 (0.06)[23.40 (0.11) 0.00 (0.00)| 0.00 (0.00)| 0.00 (0.00)
2010 | 2.50 (0.04)] 3.40 (0.05)[ 5.20 (0.06)]10.30 (0.08)| 4.90 (0.06)[ 5.00 (0.06)] 6.30 (0.06)[ 0.00 (0.00)[20.60 (0.10)[ 0.00 (0.00)[ 0.00 (0.00)
2011 | 2.30 (0.04)] 3.10 (0.04)] 4.80 (0.06)| 9.30 (0.08)| 4.10 (0.05)] 4.30 (0.05)] 6.10 (0.06)] 0.00 (0.00)] 0.00 (0.00)18.40 (0.10)| 0.00 (0.00)
2012 | 2.30 (0.04)| 3.10 (0.05)] 4.80 (0.05)| 8.60 (0.07)| 3.70 (0.05)] 4.10 (0.05)] 6.00 (0.06)[ 0.00 (0.00)[ 0.00 (0.00)[ 0.00 (0.00)[17.50 (0.10)

*In diagonal cells, %is the frequency of variables averaged overall simulations, SEis the standard errors of these frequencies across allsimulations. In off-
diagonal cells, %is P the frequency (%) of co-occurrence of the corresponding row and columnbinary variables averaged over all simulations, SE is the standard
error of these frequencies across all simulations.

Sentinel Methods Report

-24-

Safety Signaling Methods for Survival
Outcomes to Control for Confounding
in the Mini-Sentinel Distributed Database




Sentinel’

3. Performance of Exposure given Covariate Procedures

Figure 2 provides boxplot summaries of the simulation distributions of the coefficients from the pooled-
data propensity score models. The figure shows excellent agreement across covariate generation
methods. Site-specific propensity score coefficients are shown in Appendix Figures B 1 a-e.

Figure 2. Simulation distributions of coefficients from pooled data propensity score model (5,000
simulations)
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4. Performance of Outcome Given Exposure and Covariates Generation Procedures

Figure 3, Figure 4 and Figure 5 show boxplot summaries of the simulation distributions of the
coefficients from a Cox PH model fit to each simulated dataset pooled over site. Specifically, the Cox PH
model fit was a model adjusting for indicator of ACEl exposure, all covariates, andsite indicator variables
in a single model. Across data generation methods the coefficient distributions show very good
agreement, withthe exception of the bootstrap distribution for the dummy indicator for site 5. Thus, to
make the figures viewable very extreme outliers from that site were not plotted. The difference in the
coefficient distribution for site 5 for the bootstrap appears to be due to the parametric model
potentially not fitting the data very well, or from an alternate perspective, to the data not being
particularly suitable for the estimation of hazard ratios. This can be seen more clearly in the site-specific
figures included as Appendix Figure B 3 a-e and Figure B 4 a-e where the distributions for some of the
coefficients under the parametric models at site 5 do not generate nearly as many extreme values. In
practice, we may choose to exclude a data partner like site 5 because there were no events in the BB
group in the source data which led to instability in the coefficient estimatesfrom that site.
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The choice of censoring model appears to have made little difference in the results. Figure 6 and Figure
7 show boxplot summaries of model coefficients compared across censoring methods holding the

covariate data generation method constant.
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Figure 4. Distributions of fitted coefficients from Cox PH outcome model to simulations with simple

censoring (5,000 simulations)
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Figure 5. Distributions of fitted coefficients from Cox PH outcome model to simulations with covariate
adjusted censoring (5,000 simulations)
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Figure 6. Distribution of coefficients from Cox PH outcome modelfitted to simulations with different
censoring models and multivariate normalthresholding (5,000 simulations)
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Figure 7. Distribution of coefficients from Cox PH outcome modelfitted to simulations with different
censoring models and using regressions chains (5,000 simulations)
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D. DISCUSSION

Section Il has presented a simple simulation approach for generating subject level survival outcome data
from summary level information. This is an advantage in situations where sharing subject level datais
not possible. Because the summary level information is from real data, our simulation approach mimics
realistic real-world data examples that can be used for future method evaluation studies. It keeps the
main features of complex dataintact, in this case marginal distributions and pairwise correlations, and
requires minimal summary information to conduct the simulation study. All proposed simulation
methods in this approach share a key feature of maintaining complex confounder relationships including
correlation between confounders. Certain methods may break down when there are strong
interdependent confounder relationships and this would be something one would want to evaluate
when assessing method performance. Another key feature of this approach is that it allows for complex
relationships between the censoring mechanism and covariates. Often in simulation studies a very
simple censoring assumption is made in which censoring is not reliant on other information such as
covariates. In practice, censoring is strongly related to covariate information including the exposure of
interest. For example, people who are older may be more likely to stop taking medications or switch to a
new medication due to drug interactions given that they tend to take more medications overall, yielding
age-dependent censoring. Further, like the example presented in this paper, censoring can also depend
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on the exposure of interest. Those that received beta blockers were more likely to be given a 30-day
prescription versus ACEl users who were more likely to receive a 90 day. When comparing the
performance of statistical through simulation studies, retaining these key features allows an analyst to,
say, narrow the focus of the simulation evaluation to datasetsthat resemble the data that could be
sampled directly at a particular data network, or to mimic data coming from the different data partners
in a data network to evaluate statistical methods meant to be deployed in a distributed fashion.

We use this simulation approach in our simulation study presented in Section IV comparing methods for
estimating HR using the ACEl and Angioedema example.

ll.  STATISTICAL METHODS FOR THE NON-DISTRIBUTED DATA SETTING

We will present several conditional survival regression methods that are typically applied to datasetsin
which subject level data could be shared across sites without concerns about patient privacy or concerns
that the data are proprietary. Conditional methods can be defined as methods that condition directly on
confounders (adjusted confounder methods) or condition on strata.

A. COX PH REGRESSION ADJUSTING FOR CONFOUNDERS

Assume atsites (s=1, ..., S), we observe data from participanti (i =1,..., n,) that has either received
the exposure of interest, X;; = 1, or the comparator, Xg; = 0. Furthermore, each participant has a set of
baseline confounders, Z;, §,; indicating whether they have experienced the outcome before the end of
the study follow-up period and 0 otherwise and T§; for time to event or censoring. Further, define a set

of site indicator variables Sg; = (SZ,... S3;) where Sgi is 1if s=jand 0 otherwise.

Consider an adjusted Cox's PH regression model adjusting for confounders and site indicator variables
(Adj Confounders+Site),

A(TsiJgsilxsi'Zsi'Ssi) = AO (Tsi)exp[ﬁ)?djxsi + BZ Zsi + ﬂS Ssi]' (1)

where 1,(*) is an unspecified baseline hazard function, B)‘?dj is the log(HR) comparing the exposure of
interest to the comparator, 8, isa 1l X pvector of unknown confounder regression parameters, and
Bsisal X (§— 1)vector of unknown site regression parameters. We would estimate the regression
model using standard partial maximum likelihood estimation to derive the fitted estimates [?x ,B, ,and

Bs .

For a given analysis time we would be interested in assessing the following hypothesis: Hy: By = 0
versus H,: By > 0. To assess this hypothesis, we would derive a test statistic. One standard test statistic
is the Wald test statistic, ,éx/ V(ﬁx). However, it is more common to form a score test statistic (a.k.a.

Log Rank Statistic) since it is relatively more powerful, while still being straightforwardto calculate. The
corresponding Log Rank test statisticis:
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LR
(0 — 0
Z{R,l:TkIZTsi} X1 exp (Bﬁ )Zkl +ﬂ§ )Skl)
Z{k,l:Tklszi} exp (ﬁ;o)zkl + 3&0) Skl)

is,i:oq=1) | Xsi —

2
(0 (0 (0 (0
Dk, TT i) Xk €XP (ﬁi )Zkl + B§ )Skl) Dk, TT i) Xkt €XP (ﬁg )Zkl + B§ )Skl)
Dk T2Ts;) €XP (ﬁgo)lkl + 3§°)5k1) Dk Ty 2T, €XP (?;O)Zkl + 3§O)Skl)

s ii6=1)

where 3;0)and 3§O)are the fitted parameter estimates of model (1) under H, that Sy = 0. Large
positive values of LR signify that the exposure of interest has a higher hazard ratio compared to a
comparator.

Direct adjustment for categorical confounders performs well if the number of confounders is low
relative to the number of outcomes observed. For the FDA Sentinel setting our datasetstend to have a
large sample size, but we are often in the rare event setting when the number of outcomes is still
relatively small. Therefore, as the number of confounders increases we may not be able to directly
adjust for all of the confounders. To address this issue propensity score methods have been proposed to
account for confounding instead and we will describe several different approaches in the following
sections.

B. COX PH REGRESSION ADJUSTING FOR PROPENSITY SCORES (LINEARLY, INDICATORS, OR B-
SPLINES)

Propensity score methods are used to reduce the confounder information into a summary score to
address large number of confounders in a more parsimonious model framework. We will outline three
different propensity score approaches using Cox PH regression through adjustment.

The propensity score is defined as the probability of being exposed given a set of confounders.
Specifically, for our setting we can define it dependent on baseline confounders and site assuming the
following logistic model,

esi = P(XsilZsi,Ssi) = exP[Yz Zg+Ys Ssi]/(1+ exp[}'z Zg+ys Ssi])-
The estimated propensity score, ég;, is derived fitting the logistic regression model using standard MLE

theory to obtain regression parameter estimatesof y, andys .

The most common approach to adjust for propensity score has been through a linear adjustment using
the following Cox PH model,

A(Tsi'(ssileiresi) = /IO(Tsi)exp [ﬁ}I;SAdesi + .Bp esi]' (2)

However, this approach has shown to be biased for survival outcomes as well as for continuous and
binary outcomes likely due to residual confounding from model misspecification.(30) A more flexible
approach to model the relationship between the propensity score and outcome is to use a set of
propensity score indicator variables based on percentiles. Specifically, define a set of k-1 indicator

variables e¥. = [(esi > es(iloo(k_l)/m%tile) n (esi < es(iIOOk/K)%t”e)] for k=2,...,K. Theninclude the

indicator variables in the Cox PH regression model as follows,

A(TSD 651' |Xsi»SSi,e.si) = AO(Tsi)exp [E)I;SIAdesi + ﬁlpegs , (3)
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where el; = (eZ, ..., eX)Tisa (K-1)x1 vector of propensity score indicator variables for site s. We call
this method Cox PH “Adj PS Indicators”. An open research question is how to choose K the number of
propensity score strata which will depend on number of outcomes, strength of confounding, and the
underlying distribution of the observed propensity scores. We will vary K in the simulation study
including 5, 10, 15, and 20 strata.

The last approach that we will evaluate is to adjust for propensity scores using splines and in particular
cubic b-splines with two internal knots at 33.3% and 66.6% quantiles yielding 5 parametersin the model.
We use b-splines because they are computationally easy to fit. We will call this method Cox PH “Adj PS
B-Splines” and it is fit using the following Cox PH model,

ATsi, 80 1Xs0,Ssi.€51) = Ao (T exp[ By PV Xy + By f ()] (4)
where f(e;,) are5 cubic b-spline basis functions.

C. COX PH REGRESSION ADJUSTING FOR SITE-SPECIFIC PROPENSITY SCORES (INDICATORS OR
B-SPLINES)

Often the relationship between receiving the exposure of interest and confounders may be different at
each site. Sites are healthcare plans across different regions throughout the US. An example of reasons
for differences may be due to different formulary plans for dispensing of medications or the availability
of anew vaccine. Therefore, you may not expect the uptake of a new medical product to be similar
across healthcare plans and/or the relationship between confounders to be similar. Ifthe uptake is
different, but the relationship between uptake and confounders across sites is the same, then the
previous propensity score model adjusting for site as a main effect is correctly specified. However, if the
relationship between confounders and exposure is different across sites you may want to model site-
specific propensity score models. An example may be that at certain sites the new vaccine was primarily
given to children at 3 months, but other sites the vaccine was given across all infant ages. Further, when
moving to the distributed data setting site-specific propensity score information may only be available
since data cannot be combined across sites into a single dataset. Therefore, there are multiple reasons
site-specific propensity scores could be used and there are different approaches to adjust for them.

The first approach, Cox PH “Adj Site-PS Indicators”, we propose and will evaluate assumes the following
Cox PH model with adjustment for site and site-specific propensity score indicator variables interacted
with site,

§ SitePSIAdj . .
MTsi, 65i1Xsi,Ssi €5) = Ao(Ts)exp[ By 7Y Xy + Bs Ssi + Bh ey S+ -+ + Bye;SS1(5)
where e_; is a (K-1)x1 vector of site-specific propensity score indicator variables for site s.

The second approach, Cox PH “Adj Site-PS B-Splines”, uses b-spline basis from each site-specific
propensity score model and adjusts for site and site-specific b-spline bases interacted with site. It is
similar to model 5, except it replaces propensity score indicator variables with cubic b-spline bases as
follows,

SitePSBSAdj .
ﬁxl ¢ ]Xsi + BS Ssi + B;laf(eli)ssli + -

A(Tsi: 5si |Xsilssi,esi) = /10 (Tsi)exp {6)

+B5f (es)S5
where f(eg;) is a 5x1 vector of 5 cubic b-spline basis functions on the site-specific propensity score for
site s.
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D. SITE-STRATIFIED COX PH REGRESSION ADJUSTING FOR CATEGORICAL CONFOUNDERS OR
SITE-SPECIFIC PROPENSITY SCORES (INDICATORS OR B-SPLINES)

Instead of adjusting for site and/or confounders in the mean model as outlined in model (1) in Section
ILA, another common method to account for confounding by site and/or confounders is to use a
stratified Cox PH regression model. The stratified cox model makes a proportional hazard assumption in
each site and/or confounder strata but allows for different baseline hazards between strata.

A common approachis to do asite-stratified Cox PH model, but adjust for confounders directly in the
regression (Stratify Site Adj Confounders). This approach accounts better for differences across sites
compared with adjusting directly for site and therefore, reduces potential bias if there are different
relationships between those that receive the exposure versus comparator across sites. The disadvantage
of this approach is there may be some loss of power/efficiency relative to adjusting for site in the
situation when a common baseline hazard assumption is valid. In the simulation study in Section Ill, we
will assess whether this loss of power/efficiency occurs in the rare event setting. The specific form of the
Cox PH regression model is,

A(TsiJgsilxsi'Zsi) = ASO(Tsi)exP[ﬁafiteStrXsi + Bz Zsi]lfor 5=1""'S' (7)

This method still estimates a conditional HR (exp (S5 €St), but is conditional on site as a strata and
confounders as adjusted. However, if there are numerous confounders to adjust for one may have
model fitting issues similar to problems when using the Cox PH adjusting for categorical confounders
method outlined in Section Il.A. We will also assess the performance of stratifying by site, but adjusting
for site-specific propensity scores using cubic b-splines (Stratify Site Adj Site-PS B-splines) as follows,

MTyi, 84 1Xsi, Ssi €5:) = Aso (T exp| B PP AV X + BLf (1)SL + -+ + BSf(es)SE]48)

where f(eg;) is a 5x1 vector of 5 cubic b-spline basis functions on the site-specific propensity score for
site s. Another approach to dimension reduction would be to stratify on the propensity instead of
adjust.

E. PROPENSITY SCORE-STRATIFIED COX PH REGRESSION

Stratifying on percentiles of propensity scores is another common approach to account for confounding.
First, we will define the Cox PH “Stratify PS” method as stratifying on propensity score percentile strata.
This method will include site as a confounder in the propensity score model similar to the methods
outlined in Sections I1.B. Then define the following stratified Cox PH model,

A(Tsi'(ssilXSi) = AkO(TSi)exp[ﬁ,fSStrXsi],for k=1,...,K. (9)

Previous literature indicated that 5 (K=5) quantiles of the propensity score was sufficient to account for
confounding(7), but it depends on the strength of confounding and distribution of the propensity scores.
Other literatureindicatedthat 5 wasactually not enough and residual confounding still persisted. (46)
We will vary the number of quantiles to be 5, 10, 15, and 20 in the simulation evaluation. The potential
advantage of this method relative to propensity score adjustment methods is the relaxation of the
proportional hazard assumption betweenstrata. However, often an overall propensity score model may
not be viable to estimatein a distributed data setting, but site-specific propensity score models are
estimable. The following section will outline such a method.
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F. SITE AND SITE-SPECIFIC PROPENSITY SCORE-STRATIFIED COX PH REGRESSION

Another approach we will evaluate takes into account confounding by using stratified Cox PH regression
in which the strata are defined as site and site-specific propensity score percentile strata. This Cox PH
“Stratify Site+Site-PS” method has similar properties as the “Cox PH regression adjusting for site-specific
propensity score indicators” method outlined in Section Il.C except allowing the baseline proportional
hazardsfunction to vary by strata. The specific stratified Cox PH model fit is the following,

MTsi,85:1Xs1) = Ayeso (T ) exp[BSEePSSrx |, for k=1,...,Kand s=1,...,S.

(10)

This method relaxesthe proportional hazardsassumptions by assuming different baseline hazards
across strata. However, this can lead to lowering power and modeling fitting issues as more strata are
needed to control for confounding. Interacting strata with site will further increase the number of strata.

We will evaluate if this method will be viable in the simulation study for different Sentinel settings. We
will compare methods in terms of bias, type | error, power, and coverage. Bias was defined as the
difference between the estimatedlog HR and the true conditional log HR. Type | error was defined as
the proportion of simulations that signaled (p-value<0.05 based on Score Test) when the true
conditional log HR was set at 0. Power was defined as the proportion of simulations that signaled given
the true conditional log HR was set at a specified value. Coverage was defined as the Wald 95% Cl for
the estimated HR included the true conditional HR.

Table 14. Summary of evaluated methods

Method Confounder Control Confounder Sharing

Adj Confounders+Site (1) Regression on Confounders and Site Pooled

Adj PS Indicators (3) Regression on Propensity Score (includes Pooled
confounders and site) Indicators

Adj PS B-splines (4) Regression on Propensity Score (includes Pooled
confounders and site) B-Splines

Stratify Site Adj Stratify on Site and regress on categorical Pooled

Confounders (7) confounders

Stratify PS (9) Stratify on Propensity Score (includes confounders | Pooled
and site) categories

Adj Site-PS Indicators (5) Regression on Site-Specific Propensity Scores Site-Specific
(includes confounders only) Indicators and adjust
for site and interactions with site

Adj Site-PS B-splines (6) Regression on Site-Specific Propensity Scores Site-Specific
(includes confounders only) B-Splines and adjust for
site and interactions with site

Stratify Site Adj Site-PS B- | Stratify on Site and regress on Site-Specific Site-Specific

splines (8) Propensity scores (includes confounders only) B-
Splines and include interactions with site

Stratify Site+Site-PS(10) Stratify on Site and Site-Specific Propensity Scores Site-Specific
(includes confounders only) categories
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IV. SIMULATION EVALUATION FOR THE NON-DISTRIBUTED DATA SETTING

The purpose of this simulation study wasto compare the performance of regression and stratification
methods using propensity scores (Non-Distributed Methods outlined in Section Ill)in a real world
example where there are numerous sites with varying sample size, complex relationships between
confounders (confounders are correlated), and complex relationships between confounders and
exposure (e.g. the relationship between confounders and likelihood of receiving medication may be
differential across sites). The reason we want to use actual data is to obtain realistic relationships
between exposures of interest, confounders, and outcomes when assessing performance of methods.
We will use the approach outlined in Section Il to conduct the realistic data simulation. We will use two
examples from the Mini-Sentinel Pilot study. We will first summarize the two studies in SectionIV.Aand
then in Section IV.B we will provide results for the ACEl and Angioedema simulation study and Section
IV.C we will provide results for the Rivaroxaban and Ischemic Stroke simulation study. In Section Vand
VI we will tailor and evaluate via simulation the most promising methods for the distributed data setting
in which limited datais shared centrally by sites.

A. PREVIOUS STUDY SUMMARIES

1. ACEIl and Angioedema Data Summary

Angiodema is an adverse effect thatis known to be more common following use of angiotensin-
converting enzyme inhibitors (ACEI) relative to other medications to control high blood pressure, such as
beta blockers (BB).(11, 15, 22) A previous Mini-Sentinel task order(45) assessed the association between
ACEIl and angioedema -using a cohort from 2008 to 2012 within the Sentinel Network. This previous
study used a new user cohort design in which participantswere new users of either ACEl or BB and did
not have a fill from either medication class in the 183 days before cohort entry. Once participants were
eligible for the cohort, they did not allow re-entryin subsequent study years (only one exposure episode
included per subject). After participantswere enrolled in the study (index date) they were followed to
determine time to first diagnosis of angioedema or censored due to disenrollment from healthcare plan,
stopping use of the medication (+14 days added to follow-up time to allow for additional adverse events
that may be related to medication use), or 364 days after the index date (interest in 1-year follow-up
outcomes). A study summary is below, including the data available and cohort definitions.

Exposure of Interest: Angiotensin-converting enzyme inhibitor (ACEIl)
Comparator: Beta Blocker (BB)
Outcome: Time to Angioedema or censoring

Sites: 5 Sentinel Sites

Confounders: Age (18-44, 45-54, 55-64, 65-99), Female(M/F), Charlston/Elixhauser Combined
Comorbidity Score ([-2,0]/1+), Emergency Room Visits (0/1+), Inpatient Hospitalization (0/1+), Year drug
initiated (2008, 2009, 2010, 2011, 2012)

Eligibility/Exclusion Criteria of Cohort: New user of ACEI or BB from 2008 to 2012; Continuous
enrollment at their health plan with a drug benefit (defined as having a gap of less than 45 days
between drug benefit enrollment periods) of at least 183 days prior to index date; Excluded if they had
concomitantly used medications in both therapeutic classes of interest on the index date (i.e., filled
more than 1 medication of interest on index); Excluded if they had a prior diagnosis of angioedema in
the 183 days prior to the index date.
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For this methods evaluation task order, we are reusing analytic datasetsfrom 5 Sentinel Sites to conduct
a simulation study to compare methods outlined in Section Ill, varying the relationship betweenthe
exposure of interest (ACEIl) and the outcome (time to Angioedema or censoring).

2. Rivaroxaban and Ischemic Stroke Data Summary

We are using a subset of data assembled for the recently-conducted Mini-Sentinel Surveillance study,
which evaluated if the new anticoagulant Rivaroxaban was associated with the adverse effect ischemic
stroke compared to the comparator group Warfarin. The Mini-Sentinel surveillance study found an
adjusted hazard ratio of 0.61 (95% Cl: 0.47, 0.79) for the outcome Ischemic Stroke comparing
Rivaroxaban new users to Warfarin new users.(43) The primary analysis used a 1 to M variable ratio
propensity score exposure matching nested in eachsite to control for confounding with an outcome
Cox PH model stratified by matched sets.

This report uses a subset of the original study data from two sites from 2013 to 2015 to conduct a
simulation evaluation of the performance of the methods outlined in Section lll. The study population is
a new user cohort design in which participants were new users of either Rivaroxaban or Warfarin and
did not have a fill from either medication class in the 183 days before cohort entry. We further
restrictedto those without a past history of cerebrovascular disease in the 183 days before cohort entry
since this subset of the population has a lower outcome rate which is better to assess performance of
the methods. Once participants were eligible for the cohort, re-entryin subsequent study years was not
allowed (only one exposure episode included per subject). After participants were enrolled in the study
(index date) they were followed to determine time to first diagnosis of ischemic stroke or censored due
to disenrollment from the healthcare plan or stopping use of the medication (+7 days added to follow-
up time to allow for additional adverse events that may be related to medication use). Inthis simulation,
for simplicity, we further censored at 180 days after the index date since this is a new user cohort and
follow-up time for most participantswas less than 6 months. A study summary is below, including the
data available and cohort definitions. Note we are using only a small subset of the >100 covariates used
in the original study since most covariates were strongly correlated and several of them were measuring
the same outcome (e.g. Peripheral Vascular Disease diagnostic codes and procedure codes were
combined into a single confounder) tofocus the simulation study. The subset of covariates was selected
a priori based on knowledge about risk factors of the outcome. As will be shown, restricting to fewer
covariatesdid not have much of an impact on the estimated risk in the study population.

Exposure of Interest: Rivaroxaban (RIVA)
Comparator: Warfarin (WARF)
Outcome: Time to ischemic stroke or censoring

Sites: 2 Sentinel Sites

Confounders: Age (21-55, 56-65, 66-75, and 76+); Sex (M/F); Charlston/Elixhauser Combined
Comorbidity Score (-2-0, 1-4, and 5+); Emergency Room Visits (0/1+); Inpatient Hospitalization (0/1+);
Year (2013, 2014, and 2015); Heart Failure/Cardiomyopathy (Y/N) , Hypertension (Y/N); Hyperlipidemia
(Y/N); Coronary Artery Disease (Y/N with Yes including a code for Myocardial Infarction, Acute Coronary
Syndrome, Percutaneous Coronary Intervention diagnostic or procedure, or Coronary Artery Bypass
Graft diagnostic or procedure); Peripheral Vascular Disease (Y/N with Yes including Peripheral Vascular
Disease diagnostic or procedure code and other Arterial Embolism); Diabetes(Y/N); Renal Disease (Y/N);
and Tobacco (Y/N).
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Eligibility/Exclusion Criteria of Cohort: Eligible patients were those with a new diagnosis of atrial
fibrillation or atrial flutter who were a new user of RIVA or WARF after their AF diagnosis and from
January 1, 2013 to April 30, 2015; and continuous enrollment at their health plan with a drug benefit
(defined as having a gap of less than 45 days between drug benefit enrollment periods) of at least 183
days prior to index date. Patients were excluded if they had chronic dialysis, history of kidney transplant,
end stage renal disease, mitral stenosis or mechanical heart valve, or recent joint
replacement/arthroplasty surgery within 183 days before cohort entry. We further focused the analyses
to the subgroup without a history of cerebrovascular disease in the 183 days before the index date
(including any code for ischemic stroke, transient ischemic attack, other ischemic cerebrovascular
disease diagnosis or procedure, and non-specific cerebrovascular symptoms) for the simulation study.

B. SIMULATION STUDY FOR ACEI AND ANGIOEDEMA EXAMPLE

1. ACEI and Angioedema Data Detailed

We are using the ACEl and Angioedema example previously described in Section IV.A. We will first
briefly summarize the important aspects of the data we will be mimicking in our simulation study. Table
15 shows the sample size and outcome information by site. The total sample size across all sites is
2,251,132 with smallest site (Site 5) having a total sample size of 62,857, while the largest site (Site 1)
has a total sample size of 722,264. The average site sample size was 450,226. Therefore, the sample size
at the sites is quite variable with two large sites (Site 1 and 4), two medium sites (Site 2 and 3), and one
small site (Site 5).

The distribution of censoring times was driven primarily by the estimated time on drugs. In claims, the
time on drugs is estimated from a stockpiling algorithm of days supply from consecutive filled
prescriptions. Estimated time on drug had a multimodal distribution with distinct peaks (at 30 days, 60
days and 90 days) reflecting the typical days supply of 30 days for some prescriptions. At four of the five
sites, the most common censoring time overall was 44 days (30 days + 14 day continuation period added
to time on drug to allow for additional adverse events that may be related to medication use), which
comprised approximately 25-30% of all censoring times at these four sites. At the remaining site the
most common censoring time was 104 days which comprised approximately 37% of all censoring times.
We will use the three most prevalent modes in the distribution of stockpiling of prescriptions times to
help model our censoring distribution (common bumps are at 44, 104, and 194 days, but we will allow
the data to choose the most common bumps which varied by site). Unadjusted outcome ratesare
relatively consistent across sites, yielding an unadjusted rate ratio of angioedema between 2.0to 3.3
comparing ACEls versus BBs.
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Table 15. Sample size and outcome information by site and exposure group

site Exposure N Avg. Person- Events Events/ 1,000 Unadjusted
Days P-years Rate Ratios
Site 1 BB 315,378 107.0 236 2.55 2.0
ACEI 406,886 128.9 728 5.07
Site 2 BB 124,889 152.1 87 1.67 3.3
ACEI 164,371 181.2 444 5.45
Site 3 BB 209,281 129.9 130 1.75 3.0
ACEI 291,955 154.1 647 5.25
Site 4 BB 306,239 119.0 160 1.60 2.5
ACEI 369,276 144.0 592 4.07
Site 5 BB 28,942 114.7 23 2.53 2.0
ACEI 33,915 149.9 70 5.03

Further we present sample proportions for exposure and confounder levels by site in Table 16. We note
that ACEls were prescribed more often (~¥55%) than BBs (~45%) at all sites. Typically for a new medical
product the exposure of interest would be less common than the comparator. We will explore such a
new product example in the distributed portion of the report. For age, there are important differences
across sites, and in particular, users of ACEl and BB are much older on average at Site 3 than at the other
sites. Ageis typically an important confounder (strong relationship to outcome) so methods using the
confounders directly or site-specific propensity models may be preferable. Site 3 also has higher rates of
comorbidities and inpatient visits which may be due to having an older population relative to other sites.
There are also notable differences in the distribution of the year that drug exposure occurred;
specifically, Site 1 had a much smaller proportion of drug exposures beginning in 2008 compared to the
other sites.
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Table 16. Exposure and confounder distributions by site

Site 1 | Site 2 | Site 3 | Site 4 | Site 5

EXPOSURE

BB 44 43 42 45 46

ACEI 56 57 58 55 54
CONFOUNDERS
Age

18-44 28 22 9 22 26

45-54 29 25 12 24 30

55-64 27 25 15 26 32

65+ 17 28 63 28 13
Sex

Male 51 49 48 51 52

Female 49 51 52 49 48
Comorbidity Score

[-2,0] 79 78 64 76 77

1+ 21 22 36 24 24
ED Visits

0 81 81 84 87 79

1+ 19 19 16 13 21
Inpatient Visits

0 90 91 84 86 89

1+ 10 9 16 14 11
Year

2008 13 26 21 23 21

2009 27 23 21 22 21

2010 23 19 19 20 21

2011 19 16 19 18 19

2012 18 16 19 17 18

Data depicted is the column percent (%) showing the percent of each site’s study population with a given exposure or
confounder.

Table 17 shows the relationship between the confounders and the exposure of interest by site. These
are the coefficients from the observed data’s site-specific propensity score models estimating the
propensity of being exposed to the ACEI relative to BB given the confounder conditional on all other
confounders. There seems a similar propensity of being given ACEl relative to BB across all sites for age
(ACEIl most likely amongst those 45-64, medium likely 65+ and least likely 18-44). Site 5 shows ACEI
being given at an even higher likelihood across all older age groups relative to other sites. ACEl are less
likely to be given to Females compared to Males, but this relationship is less strong amongst those at
Site 3. Those who receive ACEIl are less likely to have any comorbidities, ED Visits, or Inpatient Visits and
these relationships seem to be consistent across sites. There are some modest site differences in uptake
of ACEIl over the study years in which some sites had higher propensity to prescribe ACEl relative to BB
starting in 2009 (Site 3, Site 4, and Site5 indicated by higher odds ratios) while the other two sites had
very similar propensity to prescribe ACEl across all study years.
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Table 17. Odds ratios for confoundersregressed on exposure (ACEl) by site (propensityscore models)

| site1 | site2 | Site3 | site4 | Site5

Age (Ref: 18-44)
45-54 1.68 1.76 1.55 1.60 | 1.84
55-64 1.64 1.73 1.48 1.56 | 1.84
65+ 1.28 1.31 1.29 1.32| 1.53
Sex (Ref: Male) 0.61 0.62 0.85 0.64 0.58
Comorbidity Score 1+ 0.55 0.60 0.65 0.54 0.55
1+ ED Visits 0.82 0.72 0.84 0.85 0.80
1+ Inpatient Visits 0.52 0.49 0.49 0.50 | 0.41

Year (Ref: 2008)
2009 1.08 1.02 1.11 1.11| 111
2010 1.07 1.05 1.13 1.12 | 1.14
2011 1.04 0.96 1.10 1.07 | 1.13
2012 1.01 0.91 1.09 1.02 | 1.13

Note thata single modelis run within eachsite andtherefore each odds ratio is conditional on all other

confounders.
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Figure 8. Histogram showing the overlap ofthe propensity score distributions by exposure and site
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Figure 8 shows the overlap between propensity score across exposure groups by site. Thereis very good
overlap indicating that the assumption of positivity is likely met in this population (e.g. everyone has
potential to receive either drug in the population) given the covariateswe had available.

Table 18 a and Table 18 b show the adjusted hazardratios fitting site-specific survival models including
the exposure of interest (ACEl) and all confounders in each model. Table 18 a shows the results fitting a
Cox Proportional Hazards Model (Cox PH) while Table 18 b shows the results fitting a site-specific
Weibull Accelerated Failure time model. Note that both models assume proportional hazards, but the
Weibull Accelerated Failure time model assumes a flexible Weibull distribution on the outcome time to
The tables indicate that both models estimate extremely similar hazardsratios and therefore the datais
not sensitive to adding the additional assumption of the Weibull distribution.

The findings from this example show that ACEIl has a higher rate of angioedema relative to BB and that
adjusted hazardratios range between 2.4and 3.6 across sites. However, the relationship betweenthe
confounders and angioedema is not consistent across sites for age, sex, ED visits, or year. Therefore,
thereis potential for differential relationships between outcome and confounders by site.

We further show in Figure 9 that both the adjusted HR and estimated 95% comparing ACEl to BB are
extremely similar across all sites between these two models. This finding is important, as the data
generation program simulates data assuming the Weibull Accelerated Failure time model while all of the
methods we will be evaluating in the simulation study assume a Cox PH model framework.

Table 18 a. Adjusted hazardratios for exposure ofinterest (ACEl) and confounders from site-specific
cox proportionalhazards models

| sitel | Site2 | Site3 | Sited | Site5
EXPOSURE
ACEI (Ref: BB) | 241 | 3.64 | 340 | 298 | 239
CONFOUNDERS
Age (Ref: 18-44)
45-54 097 | 127 | 0.86 | 1.19 | 1.75
55-64 090 | 127 | 0.99 | 0.93 | 1.45
65+ 089 | 114 | 108 | 1.19 | 1.43
Sex (Ref: Male) 1.20 1.08 1.09 0.99 1.59
Comorbidity Score 1+ 1.50 1.50 1.38 1.54 1.86
1+ ED Visits 089 | 078 | 1.18 | 1.24 | 0.82
1+ Inpatient Visits 1.93 | 1.34 | 1.20 | 159 | 1.36
Year (Ref: 2008)
2009 111 | 1.08 | 1.00 | 0.94 | 1.33
2010 117 | 0.88 | 1.02 | 117 | 1.64
2011 1.07 | 093 | 1.28 | 1.06 | 0.88
2012 1.20 | 0.88 | 1.01 | 0.93 | 1.49

Note thata single modelis run within eachsite andtherefore each hazard ratio is conditional on all other
covariatesinthe model.
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Table 18 b. Adjusted hazard ratiosfor exposure ofinterest (ACEl) and confounders from site-specific

Weibullaccelerated failure time models

| sitel | Site2 | Site3 | Sited | Site5
EXPOSURE
ACE| (Ref: BB) | 240 | 362 | 339 | 296 | 2.39
CONFOUNDERS
Age (Ref: 18-44)
45-54 097 | 1.27 | 0.85 | 1.19 | 1.76
55-64 090 | 128 [ 099 | 093 [ 1.47
65+ 089 | 115 | 1.07 | 117 [ 1.45
Sex (Ref: Male) 1.20 | 1.08 | 1.09 | 1.00 | 1.58
Comorbidity Score 1+ 1.51 1.50 1.38 1.55 1.85
1+ ED Visits 089 | 079 | 119 | 1.25 | 0.82
1+ Inpatient Visits 1.93 | 134 | 1.20 | 159 | 1.36
Year (Ref: 2008)
2009 111 | 1.08 | 1.00 | 0.94 | 1.33
2010 1.17 | 0.88 | 1.02 | 1.17 | 165
2011 1.07 | 093 | 1.28 | 1.06 | 0.87
2012 119 | 0.88 | 1.01 | 092 | 144

Note thata single model is run within eachsiteandtherefore each hazard ratio is conditional on all other

covariatesinthe model

Figure 9. Hazard ratios and 95% Cls by site for Weibulland Cox time-to-event models
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2. Simulation Generation and Evaluation Study

To mimic this ACEl and Angioedema real world data example, we generated simulated data using the
framework detailedin Section I, but we will briefly summarize here. For each site we calculated the
following summary statistics:

e Confounders: Probabilities within Confounders (Table 16) and Common Probabilities between
each confounder categoryand all other confounders

e Exposure|Confounders (Propensity Model): Coefficients from a logistic model fitting the
outcome ACEI versus BB with all covariatesin the model (Table 17)

e Outcome|Exposure and Confounders: Coefficients from a Weibull Accelerated Failure time for
the outcome time to angioedema including exposure and confounders in the model. We use the
true coefficients for the confounder variables at eachsite (Table 18 b) and alter the exposure
coefficients depending on the strength of relationship desired.

e Censored|Exposure, Confounders: Allowed for the three most prevalent modes in prescribing
patterns (typically 30, 90, and 180 days, but we allowed the data to choose the most common
modes, so they varied by site) and returned the prevalence of the modes and time of each mode
(See Table 8 for common censoring modes by site). To model the censoring distribution
amongst those that were not censored at any of the three most common prescribing modes we
obtained coefficients from the Weibull Accelerated Failure time model for the outcome time to
censoring (censor now the outcome) (Table 10) and we censored in this model at the time of
angioedema (angioedema now the censor variable). This model was fit amongst only those that
were not censored at the three most common prescribing modes and did not include covariates.

These summary statistics were then used to simulate subject level datasetsindependently for eachsite,
including simulated covariates, exposure and time-to-event or censoring. See Section Il for details of
how to simulate such data.

We performed 2,000 simulations for each of the four different treatment effect scenarios using total
sample sizes of 150,000 distributed by the proportionate size of eachsite in the example datasets. In the
first three scenarios, the HR comparing ACEI with BB was set to 1.0, 1.5and 2.0 and was the same at
each site (homogeneous). The fourth scenario allowed the HR to be heterogeneous/vary by site in the
same way that the estimatesvaried in the observed example data (Table 18 b and Figure 9). To calculate
the pooled HR estimate in the setting where the HR is heterogeneous we fit asite stratified Cox PH
model with all confounders and a single term for the effect of exposure (Model 7). This estimate of the
HR was used as the truth for the simulations thatincluded heterogeneity of the effect of exposure on
outcome. For each set of simulated data, all proposed models were fit and the resulting estimates,
standard errors, test statisticsand hypothesis tests returned. Estimates of bias (on the log HR scale),
power (using log rank tests) and coverage (log HR scale using Wald Confidence intervals) are presented
in Table 19 and Table 20.

3. ACEI and Angioedema Simulation Study Results

Simulation results are presented in Table 19 and Table 20. Overall the results were favorable for all
estimators. When the treatment effect is homogeneous among the sites (Table 19), pooled analysis
methods — adjusting directly for confounders, adjusting for deciles of the propensity score or adjusting
for the propensity score using B-splines —and stratification methods — stratifying on site and adjusting
for confounders, or stratifying on deciles of the propensity score — were found to have comparable
performance in terms of bias, type | error, power, and coverage. However, a key finding was that using
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quintiles of the propensity score may provide insufficient control of confounding, whether used for
adjustment or stratification. Therefore, caution should be takenin the Sentinel context when
categorizing the propensity score. Partitioning into at least deciles whenever possible is recommended,
especially when using a pooled propensity score model that assumes a consistent relationship between
confounders and exposure conditional on site. Models with site-specific propensity scores tended to
have smaller bias and higher power than their pooled-data counterparts. Nominal coverage was
achieved by all estimators.

In the setting with small amounts of site heterogeneity (Table 20) in which site-specific models should
theoretically outperform pooled data models, we did not find an appreciable difference. This likely
reflects the moderate differences observed across sites: HRs of 2.40, 3.62, 3.39, 2.96, and 2.39,
respectively, and is a limitation of the example we are using for this final report.

Note at the bottom of each of the tables we present a series of estimatesfor reference, including a
marginal estimator and the unadjusted estimator. Our marginal estimator estimatesa HR for the
average treatment effect (ATE) for the entire population by first estimating a conditional Cox PH
regression model and then marginalizing that estimate to the ATE population by estimating the HR
assuming everyone was treated comparedto everyone remaining untreated similar to Austin 2013(40).
When we state we are estimating a Marginal Stratified model, our underlying conditional Cox PH model
adjusts for site-specific covariatesand site is used as a stratification variable (Model 7). For the marginal
simulated value, we use simulated datasets and calculate the marginal estimate on each dataset and
present the mean estimate. We further show the unadjusted estimatesto gauge the magnitude of the
bias introduced by confounders. Across all scenarios the observed relative bias was approximately 10%
in the direction of the null. Since we are in the rare outcome setting, the conditional HR and the
marginal HR are approximately identical due to collapsibility conditions. Therefore, when we show bias
we are assessing the very small difference between the marginaland conditional HR for this setting.
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Table 19. Simulation results with homogeneous effects across sites (5 sites, 2,000 simulations,
samples of size 150,000)

HR=1.0 HR=1.5 HR=2.0
Model Bias | Type | |Coverage Bias | Power |Coverage Bias | Power |Coverage
Pooled Data
Adj Confounders + Site 0.003 | 0.038 | 0.961 | 0.0003 | 0.670 | 0.956 | 0.006 | 0.989 | 0.959
Adj PS Indicators
5 quantiles -0.010 | 0.035 | 0.958 | -0.013 | 0.648 | 0.953 | -0.008 | 0.987 | 0.956
10 quantiles -0.003 | 0.039 | 0.962 | -0.005 | 0.657 | 0.954 | 0.000 | 0.989 | 0.957
15 quantiles -0.003 | 0.035 | 0.963 | -0.005 | 0.658 | 0.955 | 0.000 | 0.987 | 0.958
20 quantiles 0.000 | 0.037 | 0.962 | -0.002 | 0.664 | 0.955 | 0.003 | 0.987 | 0.957
Adj PS B-splines 0.002 | 0.038 | 0.961 | -0.001 | 0.664 | 0.957 | 0.005 | 0.989 | 0.958
Stratify Site Adj Conf 0.003 | 0.038 | 0.962 | 0.000 | 0.670 | 0.955 | 0.006 | 0.989 | 0.959
Stratify PS
5 quantiles -0.010 | 0.039 | 0.958 | -0.013 | 0.666 | 0.953 | -0.008 | 0.989 | 0.956
10 quantiles -0.003 | 0.041 | 0.962 | -0.005 | 0.678 | 0.954 | 0.000 | 0.989 | 0.957
15 quantiles -0.003 | 0.039 | 0.963 | -0.005 | 0.677 | 0.954 | 0.000 [ 0.990 | 0.957
20 quantiles 0.000 | 0.042 | 0.962 | -0.002 | 0.681 | 0.957 | 0.003 | 0.991 | 0.957
Site-Specific
Adj Site-PS Indicators
5 quantiles -0.004 | 0.034 | 0.958 | -0.008 | 0.659 | 0.953 | -0.003 [ 0.988 | 0.956
10 quantiles 0.000 | 0.038 [ 0.959 | -0.002 | 0.662 | 0.955 | 0.003 | 0.988 | 0.957
15 quantiles 0.004 | 0.039 | 0.961 | 0.001 | 0.668 | 0.955 | 0.007 | 0.989 | 0.958
20 quantiles 0.004 | 0.040 | 0.958 | 0.002 | 0.664 | 0.954 | 0.007 | 0.989 | 0.956
Adj Site-PS B-splines 0.006 | 0.044 | 0.959 | 0.004 | 0.670 | 0.956 | 0.009 | 0.987 | 0.958
Stratify Site+Site-PS
5 quantiles -0.005 | 0.038 | 0.957 | -0.008 | 0.677 | 0.951 | -0.003 | 0.989 | 0.956
10 quantiles 0.000 | 0.044 | 0.959 | -0.002 | 0.677 | 0.953 | 0.003 | 0.990 | 0.957
15 quantiles 0.004 | 0.045 | 0.961 | 0.001 | 0.685 | 0.955 | 0.007 | 0.989 | 0.956
20 quantiles 0.004 | 0.045 | 0.959 | 0.002 | 0.687 | 0.953 | 0.007 [ 0.990 | 0.955
Stratify Site Adj B-splines | 0.006 | 0.035 | 0.961 | 0.002 | 0.666 | 0.954 | 0.006 | 0.988 | 0.955
Reference Estimators Not for Methods Comparison
Marginal Simulated 0.006 0.955 | 0.005 0.952 0.945 | 0.006
Unadjusted -0.092 0.933 | -0.095 0.916 0.914 | -0.092

* Follow the hyperlinks to find detailed descriptions of each method.
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Table 20. Simulation results with observed treatmentheterogeneity acrosssites (5 sites, 2000
simulations)
HR = 2.94*
Model Bias | Power |Coverage
Pooled Data
Adj Confounders + Site -0.009 1.000 0.952
Adj PS Indicators
5 quantiles -0.022 1.000 0.947
10 quantiles -0.014 1.000 0.947
15 quantiles -0.013 1.000 0.949
20 quantiles -0.010 1.000 0.951
Adj PS B-splines -0.009 1.000 0.950
Stratify Site Adj Conf -0.009 1.000 0.951
Stratify PS
5 quantiles -0.022 1.000 0.947
10 quantiles -0.014 1.000 0.947
15 quantiles -0.013 1.000 0.949
20 quantiles -0.010 1.000 0.950
Site-Specific
Adj Site-PS Indicators
5 quantiles -0.019 1.000 0.948
10 quantiles -0.012 1.000 0.949
15 quantiles -0.008 1.000 0.951
20 quantiles -0.008 1.000 0.953
Adj Site-PS B-splines -0.006 1.000 0.953
Stratify Site+Site-PS
5 quantiles -0.019 1.000 0.948
10 quantiles -0.013 1.000 0.950
15 quantiles -0.008 1.000 0.951
20 quantiles -0.008 1.000 0.953
Stratify Site Adj B-splines| -0.011 1.000 0.949
Reference Estimators Not for Methods Comparison
Marginal Stratified 0.000
Unadjusted -0.100 0.000 0.894

* HR =2.94 is the observed stratified estimate from the actual example.
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C. SIMULATION STUDY FOR RIVAROXABAN AND ISCHEMIC STROKE EXAMPLE

1. Rivaroxaban and Ischemic Stroke Data Detailed

We are using the rivaroxabanand ischemic stroke example previously described in Section IV.B. We will
first briefly summarize the important aspects of the data which we will be mimicking in our simulation
study. Table 21 shows the sample size and outcome information by site for the entire cohort, the
subgroup with no prior history of ischemic stroke in the last 183 days, and the subgroup with no prior
history of cerebrovascular disease in the last 183 days. We will use the last subgroup for the simulation
study since for statistical purposes having a rarer outcome with events not bunched so strongly at the
beginning of the follow-up time will test methods better, but we show the results for all groups since it
may be of interest to see the change in population and effect overall and within the subgroups. The total
sample size across both sites is 39,197 with 15,972 (40.7%) exposed to Rivaroxaban (RIVA). A total of
659 ischemic stroke events were observed with 471 amongst WARF users and 188 amongst RIVA users.
Unadjusted rate ratios showed a protective effect for using RIVArelative to WARF (overall RR=0.610).
When focusing on the primary subgroup with no prior cerebrovascular disease, the total sample size was
30,502 (78% of the entire study population) with 12,830 (42.1%) exposed to RIVA. Within this subgroup
outcome ratesdrop substantially from 40.1 events per 1,000 people over 180 days to 17.1 amongst
WARF users and 24.5 events per 1,000 people over 180 days to 14.0 amongst RIVA users. The
unadjusted rate ratiowas also attenuatedto0.816 overall.

Table 21. Sample size and outcome information by site and exposure group

Site Exposure N Avg.Person- | Events Events/1,000 | Unadjusted
Days P-180 days Rate Ratios
Entire Cohort
Overall WARF 23225 91.0 471 40.1 0.610
RIVA 15972 86.6 188 24.5
Site 1 WARF 18258 94.3 393 41.1 0.593
RIVA 13298 89.3 161 24.4
Site 2 WARF 4967 78.8 78 35.9 0.697
RIVA 2674 72.8 27 25.0
No Prior Ischemic Stroke
Overall WARF 20492 91.5 216 20.7 0.729
RIVA 14586 86.5 106 15.1
Site 1 WARF 16084 94.9 183 21.6 0.708
RIVA 12121 89.4 92 15.3
Site 2 WARF 4408 78.9 33 17.1 0.829
RIVA 2465 72.3 14 14.1
No Prior Cerebrovascular Disease
Overall WARF 17672 91.7 154 17.1 0.816
RIVA 12830 86.5 86 14.0
Site 1 WARF 13779 95.3 126 17.3 0.813
RIVA 10593 89.5 74 14.0
Site 2 WARF 3893 79.0 28 16.4 0.819
RIVA 2237 71.9 12 13.4
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As shown in Figure 10, in the entire population, the most common censoring time was 44 days (30 days
+14-day continuation period) overall for both medications and sites and had modes at other common
prescription durations of 60 days, 90 days and so on as well as 180 days (end of follow-up period).
Further as shown in Figure 11 most ischemic stroke outcomes occurred within the first 15 to 30 days. In
contrast to the ACE inhibitor example where the outcome, angioedema, is an allergic reactionand often
occurs soon after drug initiation, ischemic strokes would not be expected to occur rapidly following
exposure to an anticoagulant. Figure 12 shows that amongst those with no prior history of
cerebrovascular disease, censoring was still most common at 44 days (30 days +14-day continuation
period) and had bumps at other common prescription durations of 60 days, 90, and so on as well as 180
days (end of follow-up period). Further, Figure 13 shows ischemic stroke outcomes are more evenly
distributed over time than in the overall population, but with slight elevation in the first 30 days of the
study period. This patternis likely partly due to the fact that most of the person-time available is earlyin
the observation period.

Figure 10. Histogram of time to censoring by site and exposure group in the entire cohort (n=39,197 at
both sites combined)
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Figure 11. Histogram of time to ischemic stroke by site and exposure group (entire cohort)
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Figure 12. Histogram of time to censoring by site and exposure group amongstthose without history

of cerebrovascular disease (n=30,502 at both sites combined)
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Figure 13. Histogram of time to ischemic stroke by site and exposure groupamong those without
history of cerebrovascular disease
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Table 24 presents sample proportions for exposure and confounder levels by site and different
cerebrovascular disease subgroups. We note that WARF was prescribed more often than RIVA at both
sites. For age, there are important differences by sites, and in particular, users of medications were
older at Site 1 relative to Site 2. This age differences likely yields the observed lower comorbidity index
score in Site 2 relative to Site 1. Ingeneralrates of most cardiovascular and renal outcomes are lower in
Site 2 than in Site 1 indicating a healthier user population. Note that we do not have data for 2015 for
Site 2. As we will show Yearis not strongly related to outcome and therefore for methods purposes we
removed it as a potential confounder in our simulation framework.
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Table 22. Exposure and confounder distributions by site and cerebrovascular disease subgroups
No Prior Ischemic No Prior
Everyone Stroke Cerebrovascular Disease
Sitel Site2 Sitel Site2 Sitel Site2

EXPOSURE

WARF 57.9 65.0 57.0 64.1 56.5 63.5

RIVA 42.1 35.0 43.0 35.9 43.5 36.5
CONFOUNDERS
Age

21-55 2.0 6.7 2.0 7.0 2.2 7.7

56-65 7.8 16.5 7.9 17.4 8.2 18.5

66-75 38.3 27.6 38.9 27.8 39.4 27.7

76+ 52.0 49.2 51.2 47.7 50.2 46.1
Sex (Female) 45.8 42.2 45.1 40.8 44.9 40.5
Comorbidity Score

-2-0 15.8 21.3 16.9 22.5 18.2 23.8

1-4 53.0 59.0 53.8 59.4 54.6 59.4

>5 31.2 19.7 29.3 18.0 27.2 16.8
ER Visits (1+) 29.2 19.6 27.7 19.2 26.3 18.3
Inpatient Visits (1+) 52.0 51.6 48.5 47.8 46.0 45.8
Year

2013 24.1 63.0 24.1 62.9 24.0 62.8

2014 56.7 37.0 56.6 37.1 56.6 37.2

2015 19.2 0.0 19.2 0.0 19.3 0.0
Cerebrovascular Disease 22.8 19.8 13.6 10.8 0.0 0.0
Heart Failure/Cardiomyopathy 46.7 38.8 45.7 37.6 44.5 36.4
Hypertension 86.5 77.9 85.6 76.6 84.6 75.2
Hyperlipidemia 30.1 27.6 29.8 26.6 28.8 25.5
Coronary Artery Disease 27.1 19.9 26.5 19.0 24.1 17.3
Peripheral vascular disease 25.4 17.5 24.4 16.4 21.6 14.1
Diabetes 39.7 29.9 39.2 29.0 38.3 28.1
Renal Disease 24.9 14.1 24.3 13.4 23.3 12.6
Tobacco 19.5 10.6 19.2 10.4 18.5 10.3

*Data depicted is the column percent (%) showing the percent of eachsite’s study populationwith agiven

exposure or confounder.
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Table 23. Odds ratios for confounders regressed on exposure (RIVA) by site (propensity score models)
No Prior
No Prior Ischemic Cerebrovascular
Everyone Stroke Disease
Sitel Site2 Sitel Site2 Sitel Site2
Age (Ref:21-55)
56-65 0.86 0.80 0.85 0.77 0.80 0.77
66-75 0.86 0.45 0.84 0.43 0.81 0.43
76+ 0.71 0.33 0.68 0.30 0.63 0.29
Sex (Ref: Male) 1.07 1.02 1.06 1.05 1.05 1.08
Comorbidity Score (Ref:-2-0)
1-4 0.81 0.87 0.81 0.87 0.82 0.85
>5 0.57 0.55 0.57 0.53 0.58 0.54
1+ ER Visits 1.12 1.21 1.12 1.21 1.12 1.26
1+ Inpatient Visits 1.17 1.09 1.22 1.11 1.26 1.11
Year (Ref:2013)
2014 1.25 1.66 1.26 1.68 1.24 1.69
2015 1.23 1.24 1.26
Cerebrovascular Disease 0.83 0.90 0.93 1.00
Heart Failure/Cardiomyopathy 0.89 0.94 0.88 0.95 0.88 0.94
Hypertension 1.04 0.99 1.04 0.97 1.02 0.97
Hyperlipidemia 1.13 1.36 1.14 1.35 1.17 1.32
Coronary Artery Disease 0.95 0.76 0.94 0.76 0.94 0.80
Peripheral vascular disease 0.95 0.97 0.94 1.00 0.94 0.96
Diabetes 0.87 0.79 0.86 0.83 0.84 0.85
Renal Disease 0.92 0.80 0.91 0.82 0.90 0.76
Tobacco 1.18 1.02 1.18 1.06 1.18 1.01

*Data depicted isthe columnpercent (%) showing the percent of eachsite’s study population with a given
exposure or confounder.

Table 26 shows the relationship between the confounders and the exposure of interest by site and
different cerebrovascular disease subgroups. These are the coefficients from the observed data’ssite-
specific propensity score models estimating the propensity of being exposed to RIVArelative to WARF
given the confounder conditional on all other confounders. There is a lower propensity to give RIVAin
generalto older age groups, but in particularin Site 2 relative to Site 1 indicating that age s likely a very
strong confounder that is differential across site. Those with a higher comorbidity index are also more
likely to be given WARF then RIVA which is similar across sites. Those with worse renal function are also
more likely to be given WARF relative to RIVA. Both high comorbidity index and poor renalfunction are
also related to outcome. Therefore, there are several potentially strong confounders.
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Table 24. Odds ratios for confoundersregressed on exposure (RIVA) by site (propensity score models)
No Prior
No Prior Ischemic Cerebrovascular
Everyone Stroke Disease
Sitel Site2 Sitel Site2 Sitel Site2
Age (Ref:21-55)
56-65 0.86 0.80 0.85 0.77 0.80 0.77
66-75 0.86 0.45 0.84 0.43 0.81 0.43
76+ 0.71 0.33 0.68 0.30 0.63 0.29
Sex (Ref: Male) 1.07 1.02 1.06 1.05 1.05 1.08
Comorbidity Score (Ref:-2-0)
1-4 0.81 0.87 0.81 0.87 0.82 0.85
>5 0.57 0.55 0.57 0.53 0.58 0.54
1+ ER Visits 1.12 1.21 1.12 1.21 1.12 1.26
1+ Inpatient Visits 1.17 1.09 1.22 1.11 1.26 1.11
Year (Ref:2013)
2014 1.25 1.66 1.26 1.68 1.24 1.69
2015 1.23 1.24 1.26
Cerebrovascular Disease 0.83 0.90 0.93 1.00
Heart Failure/Cardiomyopathy 0.89 0.94 0.88 0.95 0.88 0.94
Hypertension 1.04 0.99 1.04 0.97 1.02 0.97
Hyperlipidemia 1.13 1.36 1.14 1.35 1.17 1.32
Coronary Artery Disease 0.95 0.76 0.94 0.76 0.94 0.80
Peripheral vascular disease 0.95 0.97 0.94 1.00 0.94 0.96
Diabetes 0.87 0.79 0.86 0.83 0.84 0.85
Renal Disease 0.92 0.80 0.91 0.82 0.90 0.76
Tobacco 1.18 1.02 1.18 1.06 1.18 1.01

Figure 10 shows the overlap between propensity score across exposure groups by site amongst those
without prior cerebrovascular disease (figures look similar for everyone and those with prior ischemic
stroke; data not shown). There s very good overlap indicating that the assumption of positivity is likely
met in this population (e.g. everyone has potentialto receive either drugin the population) given the
covariateswe had available.
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Figure 14. Histogram showing the overlap ofthe propensityscore distributions by exposure and site
amongst those without history of cerebrovascular disease
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Table 25 a and Table 25 b show the adjusted hazardratios fitting site-specific survival models including
the exposure of interest (RIVA)and all confounders in each model. Table 25 a shows the results fitting a
Cox Proportional Hazards Model (Cox PH) while Table 25 b shows the results fitting a site-specific
Weibull Accelerated Failure time model.

The findings from this analysis show that in the entire population RIVA has an overall adjusted hazard
ratio of 0.70 (0.58, 0.83) of ischemic stroke relative to WARF and that the adjusted hazardratios range
from 0.67 to 0.89 across sites. The overall adjusted hazard ratiowas calculated pooling the sites data
and running a Cox PH model adjusting for all confounders and site in a single model. However, when we
restrict the analyses to the subset to ~80% of the population with no prior cerebrovascular disease, the
adjusted hazardratio is attenuatedto0.90(0.68, 1.17) ranging from 0.88to 0.94 across the sites.
Further, the relationship between the confounders, exposure, and ischemic stroke are not consistent
across sites for age, comorbidity index, cardiovascular disease, and renal disease. Therefore, thereis
potential for differential relationships between outcome and confounders by site.
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Table 25 a. Adjusted hazardratios forischemic stroke by exposure ofinterest (RIVA) and confounders
from site-specific Cox proportional hazards models

No Prior
No Prior Ischemic Cerebrovascular
Everyone Stroke Disease
Sitel Site2 Sitel Site2 Sitel Site2
EXPOSURE
RIVA 0.67 0.89 0.78 0.97 0.88 0.94
CONFOUNDERS
Age (Ref:21-55)
56-65 0.91 2.26 0.54 2.63 0.55 2.55
66-75 0.84 1.59 0.66 1.67 0.83 1.31
76+ 1.12 2.48 1.07 2.55 1.14 2.08
Sex (Ref: Male) 1.26 1.21 1.39 1.18 1.37 1.37
Comorbidity Score (Ref:-2-0)
1-4 1.05 1.26 1.08 1.06 1.14 0.94
>5 1.53 2.32 1.78 1.80 1.95 1.72
1+ ER Visits 1.00 1.05 0.90 1.22 0.84 1.12
1+ Inpatient Visits 2.06 1.77 1.52 0.93 1.37 0.90
Year (Ref:2013)
2014 1.05 0.98 1.09 1.00 0.98 1.15
2015 1.00 1.05 0.82
Cerebrovascular Disease 4.70 4.96 1.98 1.09
Heart Failure/Cardiomyopathy 1.06 1.25 1.02 1.04 1.18 1.04
Hypertension 0.82 1.45 0.69 1.64 0.63 1.90
Hyperlipidemia 1.21 0.82 1.14 0.71 1.07 0.61
Coronary Artery Disease 0.78 1.10 0.87 1.63 1.02 1.71
Peripheral vascular disease 0.99 0.58 1.08 1.22 0.95 1.73
Diabetes 1.10 1.10 1.21 1.12 1.20 1.04
Renal Disease 1.01 0.68 1.19 0.87 1.12 0.69
Tobacco 0.95 1.05 1.08 1.18 1.28 1.17

Note thata single modelis run within eachsite andtherefore each hazard ratio is conditional on all other
covariatesinthe model
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Table 25 b. Adjusted hazard ratiosforischemic stroke by exposure ofinterest (RIVA) and confounders
from site-specific Weibull accelerated failure time models

Everyone No Prior Ischemic No Prior
Stroke Cerebrovascular
Disease
Sitel Site2 Sitel Site2 Sitel Site2
EXPOSURE
RIVA 0.68 0.89 0.78 0.97 0.89 0.94
CONFOUNDERS
Age (Ref:21-55)
56-65 0.90 2.24 0.54 2.58 0.54 2.50
66-75 0.84 1.57 0.66 1.63 0.83 1.29
76+ 1.11 2.44 1.06 2.48 1.13 2.03
Sex (Ref: Male) 1.26 1.20 1.39 1.17 1.37 1.37
Comorbidity Score (Ref:-2-0)
1-4 1.05 1.25 1.08 1.06 1.13 0.95
25 1.54 2.31 1.78 1.80 1.96 1.73
1+ ER Visits 1.00 1.04 0.90 1.22 0.84 1.12
1+ Inpatient Visits 2.06 1.76 1.52 0.94 1.37 0.90
Year (Ref:2013)
2014 1.05 1.10 1.09 1.08 0.98 1.23
2015 1.06 1.09 0.85
Cerebrovascular Disease 4.69 4.96 1.97 1.09
Heart Failure/Cardiomyopathy 1.07 1.26 1.02 1.04 1.18 1.03
Hypertension 0.82 1.43 0.69 1.64 0.63 1.90
Hyperlipidemia 1.21 0.82 1.14 0.71 1.07 0.61
Coronary Artery Disease 0.78 1.09 0.87 1.62 1.02 1.70
Peripheral vascular disease 0.99 0.58 1.08 1.23 0.95 1.73
Diabetes 1.10 1.10 1.22 1.12 1.21 1.04
Renal Disease 1.01 0.68 1.19 0.87 1.12 0.69
Tobacco 0.95 1.06 1.08 1.18 1.28 1.17

Note thata single model is run within eachsite andtherefore each hazard ratio is conditional on all other
covariatesinthe model
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Table 26. Adjusted hazardratios for time to censoring by exposure of interest (RIVA) and confounders
from site-specific Weibull accelerated failure time models

No Prior
Cerebrovascular Disease
Site 1 Site2

EXPOSURE
RIVA 1.05 0.95
CONFOUNDERS
Age (Ref:21-55)

56-65 1.03 0.86

66-75 0.92 0.69

76+ 0.92 0.69
Sex (Ref: Male) 1.02 0.99
Comorbidity Score (Ref:-2-0)

4-Jan 1.03 0.97

>5 1.14 1.06
1+ ER Visits 1.05 1.03
1+ Inpatient Visits 1.13 1.06
Year (Ref:2013)

2014 1.58 4.10

2015 8.87
Heart Failure/Cardiomyopathy 0.99 1.00
Hypertension 0.97 0.95
Hyperlipidemia 0.99 0.90
Coronary Artery Disease 1.01 0.99
Peripheral vascular disease 1.02 0.96
Diabetes 1.03 1.00
Renal Disease 0.98 1.01
Tobacco 1.06 1.01
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2. Simulation Generation and Evaluation Study

To mimic this Rivaroxabanand Ischemic Stroke real world data example, we generated simulated data
using the framework detailed in Section Il, but we will briefly summarize here. For eachsite we
calculatedthe following summary statistics:

e Confounders: Probabilities within Confounders (Table 23) and Common Probabilities between
each confounder categoryand all other confounders

e Exposure|Confounders (Propensity Model): Coefficients from a logistic model fitting the
outcome RIVA versus WARF with all covariatesin the model (Table 24)

e Outcome|Exposure and Confounders: Coefficients from a Weibull Accelerated Failure time for
the outcome time to ischemic stroke including exposure and confounders in the model. We use
the true coefficents for the confounder variables at each site (Table 25 b) and alter the exposure
coefficients depending on the strength of relationship desired.

e Censored|Exposure, Confounders: Allowed for the three most prevalent modes in prescribing
patterns (typically 30, 90, and 180 days, but we allowed the data to choose the most common
modes, so they varied by site) and returned the prevalence of the modes and time of each mode
(See Figure 8 for common censoring modes by site). To model the censoring distribution
amongst those that were not censored at any of the three most common prescribing modes we
obtained coefficients from the Weibull Accelerated Failure time model for the outcome time to
censoring (censor now the outcome) and we censored in this model at the time of ischemic
stroke (ischemic stroke now the censor variable) (Table 26). This model was fit amongst only
those that were not censored at the three most common prescribing modes and did not include
covariates.

These summary statistics were then used to simulate datasets independently for each site, including
simulated covariates, exposure and time-to-event or censoring. See Section Il for details of how to
simulate such data.

We performed 2,000 simulations for each of the four different treatment effect scenarios using total
sample sizes of 40,000 distributed by the proportionate size of eachsite in the example datasets. The HR
comparing Rivaroxaban with Warfarinwas set to 1.0, 0.80 and 0.67 and was the same at each site
(homogeneous). For each set of simulated data, all proposed models were fit and the resulting
estimates, standard errors, test statisticsand hypothesis tests returned. Estimates of bias (on the log HR
scale), power (based on log rank test) and coverage (using Wald 95% Cl on log HR scale) are presented in
Table 26.

3. RIVA and Ischemic Stroke Simulation Study Results

Simulation results are presented in Table 27. Overall the results were favorable for all estimators. The
pooled analysis methods — adjusting directly for confounders, adjusting for deciles of the propensity
score or adjusting for the propensity score using B-splines — and stratification methods — stratifying on
site and adjusting for confounders, or stratifying on deciles of the propensity score — were found to have
comparable performance in terms of bias, type | error, power, and coverage. Type-l error was
consistently lower than 0.05 for the pooled analysis relative to the site-specific propensity score
analyses. However, contraryto the ACEl and angioedema example, we did not find a clear better
performance in terms of bias when using 10 or 15 quantiles relative to 5 quantiles for pooled analyses.
We did observe this expectedtrend when using site-specific propensity score stratification or
adjustment indicating a clear need for more than 5 quantiles. Further, even in the pooled analysis the
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performance was not noticeably worse when adjusting for additional quantiles. Therefore, we still

recommend adjusting for more than5 quantiles to assure confounding control without any large loss in
power or coverage. Also, site-specific propensity score methods tended to perform better then pooled

propensity score adjustment approaches.
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Table 27. Simulation results with homogeneous effects across sites (2 sites, 2,000 simulations,
samples of size 40,000)

HR=1.0 HR =0.80 HR =0.67
Model Bias | Typel |Coverage| Bias | Power |Coverage Bias Power |Coverage
Pooled Data
Adj Confounders + Site 0.0008 | 0.042 0.955 | 0.0001 | 0.552 0.949 | -0.0028 | 0.937 0.949
Adj PS Indicators
5 quantiles -0.0008 | 0.044 | 0.956 | -0.0014 | 0.564 | 0.945 | -0.0044 | 0.941 0.950
10 quantiles 0.0022 | 0.040 | 0.955 | 0.0017 | 0.550 | 0.948 | -0.0012 | 0.937 0.948
15 quantiles 0.0029 | 0.042 0.955 | 0.0024 | 0.545 0.948 | -0.0006 | 0.935 0.950
20 quantiles 0.0032 | 0.041 0.956 | 0.0026 | 0.543 0.948 | -0.0003 | 0.935 0.950
Adj PS B-splines 0.0049 | 0.038 0.956 | 0.0044 | 0.537 0.951 | 0.0015 | 0.932 0.949
Stratify Site Adj Conf 0.0007 | 0.043 0.955 | 0.0001 | 0.555 0.948 | -0.0027 | 0.937 0.948
Stratify PS
5 quantiles -0.0009 | 0.049 0.955 | -0.0015 | 0.576 0.946 | -0.0045 | 0.943 0.950
10 quantiles 0.0022 | 0.046 0.955 | 0.0017 | 0.561 0.947 | -0.0012 | 0.939 0.948
15 quantiles 0.0029 | 0.045 0.955 | 0.0024 | 0.556 0.948 | -0.0005 | 0.940 | 0.951
20 quantiles 0.0031 | 0.043 0.956 | 0.0027 | 0.557 0.950 | -0.0003 | 0.938 0.950
Site-Specific
Adj Site-PS Indicators
5 quantiles -0.0096 | 0.055 0.954 | -0.0097 | 0.591 0.947 | -0.0125 | 0.949 0.952
10 quantiles -0.0033 | 0.047 0.953 | -0.0035| 0.570 | 0.948 | -0.0065 [ 0.940 | 0.950
15 quantiles -0.0030 | 0.045 0.954 | -0.0033 | 0.567 0.949 | -0.0063 | 0.941 0.950
20 quantiles -0.0027 | 0.046 0.953 | -0.0030 | 0.562 0.949 | -0.0062 | 0.940 | 0.950
Adj Site-PS B-splines -0.0023 | 0.044 | 0.956 | -0.0026 | 0.564 | 0.949 | -0.0055 | 0.938 0.950
Stratify Site+Site-PS
5 quantiles -0.0096 | 0.058 0.955 | -0.0096 | 0.602 0.947 | -0.0124 | 0.950 | 0.952
10 quantiles -0.0034 | 0.050 | 0.952 | -0.0034 | 0.578 0.947 | -0.0065| 0.944 | 0.950
15 quantiles -0.0031 | 0.048 0.954 | -0.0032 | 0.575 0.949 | -0.0061| 0.944 | 0.951
20 quantiles -0.0028 | 0.048 0.953 | -0.0028 | 0.576 0.949 | -0.0059 | 0.946 | 0.951
Stratify Site Adj B-splines | -0.0023 | 0.044 | 0.956 | -0.0026 | 0.565 0.949 | -0.0055 | 0.937 0.950
Reference Estimators Not for Methods Comparison
Marginal Simulated -0.0052 0.0021 -0.0033
Unadjusted -0.1095 | 0.000 | 0.849 | -0.1088 | 0.000 | 0.867 | -0.1120| 0.000 | 0.863
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V. STATISTICAL METHODS EXTENSIONS TO THE DISTRIBUTED DATA SETTING

There are several approaches to extend Cox PH regression and stratification to the distributed data
setting. We will first discuss a method for de-identifying subject level data that aggregateseventand
censoring time into categories. For Cox PH stratification which does not adjust for confounders in the
model you can actually estimate standard stratified Cox PH estimates using risk set information and
therefore there is no difference between non-distributed and distributed application. The final approach
we will discuss will apply a Mantel-Haenszel(2) type test statistics using site-specific regression models
that may be more appropriate when site heterogeneityis expected.

A. COX PH METHODS WITH AGGREGATED TIME AND CONFOUNDERS OR PROPENSITY
SCORES

The previous methods outlined in Section Il which use Cox PH regression required subject datato
conduct the analyses since we used continuous time to event or censoring as the outcome. We propose
a simple approachto deidentify data by categorizing time to event or censoring instead of using
continuous time information. This approach is viable for Sentinel both because of the rare event setting
and because censoring time is actually naturally categorized based on prescribing patterns (e.g. 30 days
or 90 days’ supply of the prescribed medication). Therefore, categorizing censoring time into 30 day or
shorter intervals likely retains the majority of the information available in the actual datasets. Further,
when using Cox PH regression methods, the actualtime of eventis not needed, but the ordering of the
times is the key quantity of interest (e.g. it does not matter thatin our dataset we observe the second
event in the dataset at day 8; what mattersis that the event was the second event and the population at
risk at that second event is known). The size of bins (e.g. 7 days or 30 days) should be large enough to
contain at least one event, but small enough not to include too many events. Therefore, if we categorize
time of event into small enough categoriesto limit the number of event ties, we are maintaining the key
features for data analysis. Even if we induce a certain number of tied event times by categorizing event
times, theinfluence of thetie is minimal because the risk set information is staying relatively stable (the
majority of censoring occurs at longerintervals and censoring is the main influence on change of risk set
information). More specifically, the estimated HR will change minimally when not recognizing that the
events were not actuallyties, because the only difference in the analysis with continuous datais that for
the event that happened second, the previous tied event would have been removed from their risk set.
Since risk sets are large, the induced tie results in a risk set changing from 49,999 to 50,000 patients, and
therefore there is minimal influence in the actual estimate. However, we will account for ties to getthe
correct variance estimates using Efron’s approach and therefore confidence intervals may be slightly
larger using categorized time instead of continuous time. We will evaluate this issue in our simulation
study to see if there is any issue with bias, type | error, or power when categorizing the information.

We will illustrate what is meant by aggregation of time and confounders for a specific dataset so that
one can understand how we would implement this method in Sentinel. We will first define the individual
level dataset that will be aggregated at eachsite to be shared across sites. First, divide the assumed two-
year study period time into quarters of a year, and categorize each participant’sstart dayinto the
guarter in which that person first enters the study. Often, we are interested in adjusting for time since
prescription patterns/confounding may be different over time. Another reason to set up the data this
way is to allow for the conduct of a surveillance study in which the analysis happens multiple times over
a study period. Specifically, assume that study startedon January 1, 2012. Then, any study participants
who initially enteredthe study from January 1, 2012 through March 31, 2012 (e.g. date participant
started taking the exposure or comparator medical product and met enrollment criteria) is assigned to
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study quarter 1. Participants who entered the study from April 1, 2012 through June 30, 2012 are
assigned to study quarter 2, and so on, up through study quarter 8.

Each participant has exposure status, X, and covariatessuch as site of enrollment (Site =1, 2, or 3) and
Age Category (Age (years) = 35-39, 40-44, 45-49, 50-54, 55-59, 60-65) at study entry. At the specified
analysis time g, they have the outcome indicator §§;(a) = I(E; < Cg; N Eg; < TS (a)) which indicates if
the participant experienced an outcome before they were censored or the current analysis time ended.
At analysis time g, they also have the time to event or censoring variable (T (a)), defined as the
minimum of the time to event, censoring, or analyses time, categorized into weekly categories. We will
now walk through a test example of 10 participantsat site 1 with 4 on comparator and 6 on exposure of

interest, and will demonstrate how the dataset is created at analysis time June 30, 2012.

Table 28. Example subject-level dataset at a site

Enrollment Date of Date of Sl 0 L
Date Site | Age | Exposure Outcome Censoring 8si(a) Time T's; ()
Jan 10, 2012 1 47 0 . 0 172
Feb 1, 2012 1 55 1 . Mar 20, 2012 0 48
Feb 20, 2012 1 60 0 Apr 10, 2012 1 50
Mar 12, 2012 1 64 0 . 0 110
Mar 31, 2012 1 58 1 . Apr 18, 2012 0 18
Apr 25, 2012 1 46 1 May 1, 2012 1 6
May 30, 2012 1 42 1 Jun 12,2012 1 13
Jun 3,2012 1 64 0 0 27
Jun 10, 2012 1 38 1 0 20
June 29, 2012 1 39 1 0 1

The first step is to deidentify the subject-level datain Table 28 by creating categoriesfor study quarter
and age, and to calculate weeks from study start for Outcome Time, TS (a) as follows:

Table 29. Example subject-level deidentified dataset at a site

studyQtr | Site Age Cat | Exposure | Outcome | OutcomeTime
8¢, (a) | T (a)in weeks

1 1 3 0 0 25

1 1 5 1 0 7

1 1 6 0 1 8

1 1 6 0 0 16

1 1 5 1 0 3

2 1 3 1 1 1

2 1 2 1 1 2

2 1 6 0 0 4

2 1 1 1 0 3

2 1 1 1 0 1
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The next step is to aggregate the subject-level data so that several participantscan be represented in
each row, to provide deidentification and the smallest number of data rows possible. To do this we
propose the following aggregate dataset:

Table 30. Example deidentified aggregate dataset at site

Study | Site | Ase | N| Ny | Y| Yo | EY | E3 | | Eg | - | B35 | €7 C3| €3 | CQ| | Cg | | C2s

Cat
Qtr
1 1 [ 3 [1]0f0oj0o]Jo0]oO 0 0o Jojojo0]oO 0 1
1 1 |5 |2]2]0oj0oJo]oO 0 0o lojojo]oO 0 0
1 1 |6 |2]o0of1]0o]o0]oO 1 0o lojojo]oO 1 0
2 1 |1 ]2]2fo]Jo]o]oO 0 o lojofo]oO 0 0
2 1 |2 (1]1f1]1]0]0O 0 0O lojojo]oO 0 0
2 1 |3 [1]1f1]1]0]0O 0 0o lofjo]o]oO 0 0
2 1 /6 [1]0fojojJo]oO 0 0olofojo]j1 0 0

El| Ez |E5 | E} E}s | €1 €2 | G 7|~ | Cs

0 [0 |o Jo 0 [0 [0 |oO 0 0

0 [0 |o Jo 0 [0 [0 |1 1 0
—>J |0 |0 |0 |oO 0 |0 [0 |oO 0 0

0 [0 |o Jo 0 [1 [0 |1 0 0

0 |1 |o Jo 0 |0 |0 |oO 0 0

1 |o [0 |o 0 [0 [0 |O 0 0

_ [0 o Jo Jo 0 [0 o |o 0 0

where within each row defining study quarter and confounder stratum, we define the following counts:
N is total number, N, is the number exposed, Y is the total number of outcomes, Y, is the number of
exposed outcomes, Eﬁ, is the number of outcomes in the comparator group observed at T (a)=w, CVOV is
the number censored in the comparator group observed at T; (a)=w, Evll, is the number of outcomes in
the exposed group observed at TS (a)=w, and Cj, is the number censored in the exposed group
observed at TS (a)=w. The number of rows in the dataset will be at most the number of study quarters
times the number of confounder categories. As the sample size increases, the number of rows in the
dataset will not increase beyond this maximum. This dataset can be securely sent to the coordinating

center where the data canbe de-aggregatedtoform the dataset needed to conduct the analysis.

This aggregation method can also be used for propensity score indicators instead of specific confounder
strata. Therefore, it can be implemented both for Cox PH with adjustment for confounders and site
directly (Adj Confounders+Site) and Cox PH with adjustment for site specific propensity score indicators
(Adj Site-PS Indicators).
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B. SITE AND SITE-SPECIFIC PROPENSITY SCORE-STRATIFIED COX PH REGRESSION

Conducting stratified Cox PH regression in which the strata are defined as site and site-specific
propensity score percentile strata (Stratify Site+Site-PS) does not actually require subject level datato
be shared across sites. The only information required to be shared across sites is a single row per event
with the following deidentified information: site-specific propensity score percentile strata, if the event
was exposed or the comparator group, ordering of event time within each stratum (15t event, 2"d event,
and so on but not the actual event time) and therisk set at that time of the analysis. Specifically, the
dataset needed would be the following:

Table 31. Example of a stratified regression dataset

. PS Stratum | Exposure | EventOrder | Numberin
Site . .
w/in Stratum Risk Set

1 1 0 1 20000
1 1 1 2 19500
1 1 0 3 16000
1 2 0 1 18000
1 2 1 2 17999
1 3 1 1 20000
1 3 1 2 18000
1 3 0 3 12000
1 3 1 4 2000
1 4 1 5 19500

This is the same information used when conducting the analysis using the continuous event and
censoring time information so this is not a new method but just an approach to simplify the data
returned.

C. MANTEL-HAENSZEL TYPE TEST STATISTIC IN DISTRIBUTED DATA SETTING

To limit data transmission, an alternative to categorizing all confounders and time is for eachsite torun
a site-specific model and to transmit centrally only summary statistics. Specifically, we will estimate site-

specific Cox PH models and use the HR site-specific estimate, AS ,and calculate an overall estimate, A ,
which is

with estimated variance

S

RN
W)
_ s=1
V)=,
s=1
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where w; can be the sample size of the site, N, or the inverse of the variance of the estimator from that

site, V(AS) . For the simulation study we assess the following two MH models in which we fit site Cox
PH models adjusting for covariates directly or using the cubic B-Splines:

MHInv Var: A(Ts;, 84 |Xsi,Zsi) = Ao (Toexp By Xoi + B, Zi] withwg = 1/V(BEY) (11)

MH B-Splines Inv Var: A(Ty;, 84| Xsi, €5:) = Ao (Ts Dexp[BES Xoi + Bof (€] withws = 1/V(BE) (12)

The only information necessary to send across sites is sample size, adjusted HR, and variance of the
adjusted HR. Further, it would be preferable to also submit table 1 type information which includes the
sample size, number of outcomes and total follow-up time by exposure and confounder categories.

Table 32. Summary of distributed methodsevaluated

Method Confounder Control Conf!aunder De-identify
Sharing

Adj Confounders+Site(1) | Regression on Categorical Pooled Aggregate Timeand
Confounders and Site Confounders

Adj Site-PS Indicators (5) | Regression on Site-Specific Site-Specific | Aggregate Timeand
Propensity Scores (includes PS-Indicators
confounders only) Indicatorsand
adjust for site and interactions with
site

Stratify Site+Site-PS (10) | Stratify on Site and Site-Specific Site-Specific Risk Sets

Propensity Scores (includes
confounders only) categories
MH Inv Var (11) At site regresson Categorical Site-Specific | Summary Info
Confounders and estimate overall
HR using Mantel-Haenzel approach
weighting on the inverse variance of
the log HR

MH B-Splines Inv Var(12) | At site regresson Site-Specific Site-Specific | Summary Info
Propensity Score (includes
confounders only) B-splines and
estimate overall HR using Mantel-
Haenzel approach weighting on the
inverse variance of the log HR

* Numbers refer to equation number referenced earlierin the report

Sentinel Methods Report - 66 - Safety Signaling Methods for Survival
Outcomes to Control for Confounding
in the Mini-Sentinel Distributed Database



Sentinel’

I
VI.  SIMULATION EVALUATION FOR THE DISTRIBUTED DATA SETTING

For this simulation evaluation we will use all of the scenarios described previously for Non-Distributed
datain SectionsIVBand C.

A. SIMULATION DISTRIBUTION OF PROPENSITY SCORE COEFFICIENTS FROM SITE 5

We will use the ACEl and Angioedema simulation scenario previously described in detail in Section IVB.
We performed 2,000 simulations for each of the four different treatment effect scenarios using total
sample sizes of 150,000 distributed by the proportionate size of eachsite in the example datasets. In the
first three scenarios, the HR comparing ACEl with BB was set to 1.0, 1.5and 2.0 and was the same at
each site (homogeneous). The fourth scenario allowed the HR to be heterogeneous/vary by site in the
same way that the estimatesvaried in the observed example data. To calculate the pooled HR estimate
in the setting where the HR is heterogeneous we fit a site stratified Cox PH model with all confounders
and a single term for the effect of exposure. This estimate of the HR was used as the truth for the
simulations thatincluded heterogeneity of the effect of exposure on outcome. For each set of simulated
data, all proposed distributed data methods were fit and the resulting estimates, standard errors, test
statistics and hypothesis testsreturned. Estimates of bias (on the log HR scale), power and coverage are
presented in Table 33 and Table 34. We further re-conducted the same simulation study with the
exception of removing the very small site 5 (2.8% of the total study population) with results presented in
Table 35 and Table 36.

Simulation results are presented in Table 33 through Table 36. Overall the results were favorable for all
estimators, with the exception of the Meta Analytic MH type methods. As shown in Table 33, the bias
was consistently the largest for the MH estimators especially when there was an elevated treatment
effect (HR=1.5o0r 2.0), both when the site-specific models directly adjusted for covariates and when they
adjusted for the propensity score using B-splines. Note that we included the use of B-splines in an
attempt to reduce the number of parameters being estimated in site-specific models, and thereby
reduce the bias of the MH estimators. The MH estimator’stype | error was consistently low, and
coverage was above 95%. For example, in Table 33 the MH method when adjusting for covariates had a
type | error of 2.9% which is statistically different from 5% (p=0.03). To assess whether the estimator’s
poor performance was in part due to the relative imbalance caused by having one very small data
partner contributing to the analysis (Site 5 had only 2.8% of the total study population), we conducted
identical simulations excluding Site 5 (Table 35 and Table 36). Removing the very small site improved
the performance of the MH estimators, but compared to the other methods evaluated here, MH
estimators still performed relatively poorly.

When the treatment effect is homogeneous among the sites (Table 33 and Table 35), pooled analysis
methods and distributed methods performed very comparable in terms of bias, type | error, power, and
coverage. They performed so well that estimates were almost the same as having continuous time to
event information relative to de-identifying censoring and outcome time into 7 or 30-day intervals. This
is likely due to the rare event setting as well as censoring mainly happening on fixed interval times (e.g.
30-day prescription fills) so information loss is minimalized with additional aggregation of the
information. Therefore, given this scenario is common in Sentinel we would recommend using this de-
identified aggregationapproachsince it allows for information sharing and analysis flexibly like
subgroups to be conducted without loss of information.

Another key finding was that using quintiles of the propensity score may provide insufficient control of
confounding, whether used for adjustment or stratification. Therefore, cautionshould be taken in the
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Sentinel context when categorizing propensity score. We did not observe less bias when we further
partitioned datainto 15 or 20 quantiles for the homogeneous treatment effect case. Nominal coverage
was achieved by all estimators with the exception of the MH-type estimatorsas previously noted.

In the setting with small amounts of site heterogeneity (Table 34 and Table 36) in which site-specific
models should theoretically outperform pooled data models, we did not find an appreciable difference.
This likely reflects the moderate differences observed across sites: HRs of 2.40, 3.62, 3.39, 2.96, and
2.39, respectively and is a limitation of the example we are using for the interim report. However, we
did notice some minor improvements when using 15 quantiles relative to 10 quantiles in this setting
(Table 34), but this improvement was not observed after removing the small site (Table 36). Therefore,
10 quantiles may be sufficient, but sensitivity analyses looking at 15 or 20 quantiles mayalso be
recommended.
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Table 33. Simulation results with homogeneous effects across sites (5 sites, 2,000 simulations,

samples of size 150,000)

Sentinel’

HR=1.0 HR =1.5 HR=2.0
Bias | Typel | Coverage | Bias | Power | Coverage | Bias | Power | Coverage
Pooled Data
Adj Confounders +Site
Continuous 0.002 | 0.039 0.961 0.002 | 0.673 0.961 0.006 | 0.989 0.959
7-Day Time Interval 0.002 | 0.039 0.961 0.002 | 0.673 0.961 0.006 | 0.989 0.959
30-Day Time Interval 0.002 | 0.039 0.961 0.002 | 0.673 0.961 0.006 | 0.989 0.959
Site Specific
Adj Site-PS Indicators
5 Quantiles
Continuous -0.005 | 0.037 0.957 -0.006 | 0.662 0.959 -0.003 | 0.988 0.956
7-Day Time Interval -0.005 | 0.037 0.957 -0.006 | 0.661 0.959 -0.003 | 0.988 0.956
30-Day Time Interval | -0.005 | 0.037 0.957 -0.006 | 0.661 0.959 -0.003 | 0.988 0.956
10 Quantiles
Continuous -0.001 | 0.040 0.959 0.000 | 0.664 0.961 0.003 | 0.988 0.957
7-Day Time Interval -0.001 | 0.040 0.959 0.000 | 0.664 0.961 0.003 | 0.988 0.957
30-Day Time Interval | -0.001 | 0.040 0.959 0.000 | 0.665 0.960 0.003 | 0.988 0.957
15 Quantiles
Continuous 0.003 | 0.041 0.961 0.004 | 0.670 0.960 0.007 | 0.989 0.958
7-Day Time Interval 0.003 | 0.041 0.961 0.004 | 0.670 0.960 0.007 | 0.989 0.958
30-Day TimeInterval | 0.003 | 0.041 0.961 0.004 | 0.670 0.959 0.007 | 0.989 0.958
20 Quantiles
Continuous 0.003 | 0.040 0.959 0.004 | 0.663 0.959 0.007 | 0.979 0.956
7-Day Time Interval 0.003 | 0.040 0.959 0.004 | 0.663 0.959 0.007 | 0.979 0.956
30-Day Time Interval | 0.003 | 0.040 0.960 0.004 | 0.662 0.959 0.007 | 0.979 0.956
Stratify Site + Site-PS
5 Quantiles -0.005 | 0.040 0.957 -0.006 | 0.681 0.958 -0.003 | 0.989 0.956
10 Quantiles -0.001 | 0.046 0.959 0.000 | 0.680 0.958 0.003 | 0.990 0.957
15 Quantiles 0.003 | 0.046 0.961 0.003 | 0.688 0.959 0.007 | 0.989 0.956
20 Quantiles 0.003 | 0.046 0.960 0.004 | 0.689 0.958 0.007 | 0.990 0.955
MH Inv. Variance -0.004 | 0.029 0.966 -0.014 | 0.610 0.966 -0.018 | 0.976 0.963
MH BS Inv. Variance -0.004 | 0.030 0.966 -0.014 | 0.610 0.967 -0.019 | 0.975 0.960
Reference Estimators Not for Methods Comparison
Marginal Simulated 0.007 0.958 0.001 0.954 -0.002 0.945
Unadjusted -0.094 0.933 -0.094 0.923 -0.090 0.915
Sentinel Methods Report -69 - Safety Signaling Methods for Survival

Outcomes to Control for Confounding
in the Mini-Sentinel Distributed Database




Sentinel,

L
Table 34. Simulation results with observed treatmentheterogeneity acrosssites (5 sites, 2000
simulations)
HR =2.94
Bias | Power | Coverage
Pooled Data
Adj Confounders + Site
Continuous -0.007 | 1.000 0.952
7-Day Time Interval -0.007 | 1.000 0.952
30-Day Time Interval -0.007 | 1.000 0.952
Site Specific
Adj Site-PS Indicators
5 Quantiles
Continuous -0.016 | 1.000 0.948

7-Day Time Interval | -0.016 [ 1.000 0.948
30-Day Time Interval | -0.016 | 1.000 0.948
10 Quantiles
Continuous -0.010 | 1.000 0.949
7-Day Time Interval -0.010 | 1.000 0.949
30-Day Time Interval | -0.010 | 1.000 0.949
15 Quantiles
Continuous -0.006 | 1.000 0.951
7-Day Time Interval -0.006 | 1.000 0.950
30-Day Time Interval | -0.006 | 1.000 0.950
20 Quantiles
Continuous -0.005 | 0.993 0.952
7-Day Time Interval -0.005 | 0.993 0.952
30-Day TimeInterval | -0.005 | 0.993 0.952
Stratify Site + Site-PS

5 Quantiles -0.016 | 1.000 0.947
10 Quantiles -0.010 | 1.000 0.949
15 Quantiles -0.006 | 1.000 0.951
20 Quantiles -0.006 | 1.000 0.952
MH Inv. Variance -0.041 | 1.000 0.944
MH BS Inv. Variance -0.041 | 1.000 0.943
Reference Estimators Not for Methods Comparison
Marginal Stratified 0.000
Unadjusted -0.095 0.895
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Table 35. Simulation results with homogeneous effects across sites, after excluding the smallest site (4
sites, 2,000 simulations, samples of size 150,000)

Sentinel’

HR=1.0 HR=1.5 HR=2.0
Bias | Typel |Coverage| Bias |Power|Coverage| Bias | Power|Coverage
Pooled Data
Adj Confounders + Site
Continuous 0.002 | 0.045 0.957 |-0.007|0.635 0.948 | 0.001|0.989| 0.953
7-Day Time Interval 0.002 | 0.045 0.958 [-0.007|0.635 0.948 | 0.001|0.989| 0.953
30-Day Time Interval 0.002 | 0.045 | 0.957 |-0.007(0.635| 0.948 |0.001|0.989| 0.954
Site Specific
Adj Site-PS Indicators
5 Quantiles
Continuous -0.005| 0.041 0.961 |[-0.015|0.621 0.946 [-0.006| 0.991| 0.951
7-Day Time Interval -0.005( 0.041 0.961 (-0.015]|0.621 0.946 (-0.006| 0.991( 0.951
30-Day TimeInterval |-0.005| 0.041 0.960 [-0.015|0.621 0.946 [-0.006]| 0.991| 0.951
10 Quantiles
Continuous 0.000 | 0.043 | 0.961 |-0.010(0.635| 0.946 |-0.001| 0.992| 0.954
7-Day Time Interval 0.000 | 0.043 | 0.961 |-0.010(0.634 | 0.946 |-0.001| 0.992| 0.954
30-Day Time Interval |0.000 | 0.044 | 0.961 |-0.010(0.634 | 0.946 |-0.001| 0.992| 0.954
15 Quantiles
Continuous 0.004 | 0.047 0.960 |-0.006]|0.638 0.948 | 0.003|0.991| 0.953
7-Day Time Interval 0.004 | 0.047 0.960 |-0.006]|0.638 0.948 | 0.003|0.991| 0.953
30-Day Time Interval |0.004 | 0.047 | 0.960 |-0.006(0.638 | 0.948 | 0.003(0.991| 0.953
20 Quantiles
Continuous 0.004 | 0.043 | 0.959 |-0.006(0.637  0.949 |0.003|0.981| 0.954
7-Day Time Interval 0.004 | 0.043 0.959 |-0.006]|0.638 0.949 | 0.003|0.981| 0.954
30-Day TimeInterval | 0.004 | 0.043 0.959 |-0.006]| 0.636 0.949 | 0.003|0.981| 0.954
Stratify Site + Site-PS
5 Quantiles -0.005| 0.045 0.961 |-0.015] 0.640 0.945 [-0.007| 0.992| 0.951
10 Quantiles 0.000 | 0.049 | 0.961 |-0.010(0.652 | 0.947 |-0.001| 0.992| 0.954
15 Quantiles 0.004 | 0.053 | 0.962 |-0.006(0.658 [ 0.948 | 0.003(0.993| 0.955
20 Quantiles 0.004 | 0.054 | 0.960 |-0.006(0.659 | 0.949 | 0.003(0.992| 0.955
MH Inv. Variance -0.001| 0.036 0.965 |-0.020]| 0.588 0.956 [-0.016] 0.982| 0.958
MH BS Inv. Variance -0.001| 0.034 0.965 |-0.020]| 0.586 0.956 [-0.016] 0.982| 0.958
Reference Estimators Not for Methods Comparison
Marginal Simulated 0.000 0.955 |0.007 0.952 | 0.010 0.955
Unadjusted -0.090 0.929 |[-0.100 0.914 |-0.093 0.914
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Table 36. Simulation results with observed treatmentheterogeneity acrosssites after excluding the
smallest site (4 sites, 2000 simulations, samples of size 150,000)

HR =2.94
Bias | Power | Coverage

Pooled Data
Adj Confounders + Site

Continuous 0.001 | 1.000 0.945

7-Day Time Interval 0.001 | 1.000 0.945

30-Day Time Interval 0.001 | 1.000 0.945
Site Specific
Adj Site-PS Indicators

5 Quantiles

Continuous -0.007 | 1.000 0.945

7-Day TimeInterval | -0.007 | 1.000 0.945
30-Day TimeInterval | -0.007 | 1.000 0.947
10 Quantiles
Continuous -0.002 | 1.000 0.945
7-Day Time Interval | -0.002 | 1.000 0.946
30-Day TimeInterval | -0.002 | 1.000 0.946
15 Quantiles
Continuous 0.002 | 1.000 0.945
7-Day Time Interval 0.002 | 1.000 0.945
30-Day TimeInterval | 0.002 | 1.000 0.945
20 Quantiles
Continuous 0.002 | 0.991 0.947
7-Day Time Interval 0.002 | 0.991 0.947
30-Day TimeInterval | 0.002 | 0.991 0.946
Stratify Site + Site-PS

5 Quantiles -0.007 | 1.000 0.946
10 Quantiles -0.002 | 1.000 0.946
15 Quantiles 0.002 | 1.000 0.946
20 Quantiles 0.002 | 1.000 0.947
MH Inv. Variance -0.035 | 1.000 0.943
MH BS Inv. Variance -0.035 | 1.000 0.944
Reference Estimators Not for Methods Comparison
Marginal Stratified 0.000
Unadjusted -0.090 0.907
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B. SIMULATION STUDY FOR RIVAROXABAN AND ISCHEMIC STROKE EVALUATION

We will use the Rivaroxabanand Ischemic stroke simulation scenario previously described in detail in
Section IV C. We performed 2,000 simulations for each of the four different treatment effect scenarios
using total sample sizes of 40,000 1distributed by the proportionate size of eachsite in the example
datasets. The HR comparing RIVA with WARF was set to 1.0, 0.80and 0.67 and was the same at each site
(homogeneous). For each set of simulated data, all proposed distributed data methods were fit and the
resulting estimates, standard errors, test statisticsand hypothesis tests returned. Estimates of bias (on
the log HR scale), power and coverage are presented in Table 37.

Overall the results were favorable for all estimators, but the Meta Analytic MH type methods had
slightly less power than the other approaches. However, bias wasnot an issue for the MH type methods
as was shown in the other Angioedema and ACEl example. This is likely due to only having two sites that
were also not as different in sample size relative to the other example.

We found that again pooled analysis methods and distributed methods performed comparably in terms
of bias, type | error, power, and coverage. They performed so well that estimates were almost the same
as having continuous time to event information relative to de-identifying censoring and outcome time
into 7 or 30-day intervals. This is likely due to the rare event setting as well as censoring mainly
happening at fixed interval times (e.g. 30-day prescription fills) so information loss is minimized with
additional aggregation of the information. Therefore, given that this scenario is common in Sentinel, we
would recommend using this de-identified aggregationapproachsince it allows for information sharing.
Another advantage is that subgroup analyses canbe easily conducted given one includes the subgroup
covariatein the returned dataset. Other deidentification approaches such as PS stratification which
shares risk set information stratified by PS stratum and MH type methods do not provide the
information to easily allow subgroup analyses to be conducted centrally on the same datasets.

Another key finding was that using quintiles of the propensity score may provide insufficient control of
confounding, whether used for adjustment or stratification. Therefore, caution should be taken in the
Sentinel context when categorizing propensity score. We observed less bias when we further partitioned
datainto 15 or 20 quantiles. This was a slightly different finding than in the ACEl and angioedema
example and therefore provides some recommendation for minimally using 10 quantiles with further
sensitivity analyses for 15 or 20 quantiles.
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Table 37. Simulation results with homogeneous effects across sites (2 sites, 2,000 simulations,
samples of size 40,000)
HR=1.0 HR =0.80 HR =0.67
Bias | Typel | Coverage | Bias | Power | Coverage | Bias | Power | Coverage
Pooled Data
Adj Confounders + Site
Continuous 0.0008 | 0.042 0.955 0.0001 | 0.552 0.949 -0.0028 | 0.937 0.949
7-Day Time Interval 0.0008 | 0.042 0.955 0.0001 | 0.553 0.949 -0.0028 | 0.937 0.950
30-Day Time Interval 0.0007 | 0.041 0.955 0.0002 | 0.550 0.949 -0.0027 | 0.936 0.951
Site Specific
Adj Site-PS Indicators
5 Quantiles
Continuous -0.0096 | 0.055 0.954 -0.0097 | 0.591 0.947 -0.0125 | 0.949 0.952
7-Day Time Interval -0.0096 | 0.055 0.954 -0.0097 | 0.591 0.947 -0.0125 | 0.948 0.952
30-Day Time Interval | -0.0096 | 0.054 0.955 -0.0096 | 0.590 0.948 -0.0125 | 0.948 0.952
10 Quantiles
Continuous -0.0033 | 0.047 0.953 -0.0035 | 0.570 0.948 -0.0065 | 0.940 0.950
7-Day Time Interval -0.0033 | 0.047 0.953 -0.0035 | 0.570 0.948 -0.0065 | 0.941 0.950
30-Day Time Interval | -0.0033 | 0.046 0.953 -0.0034 | 0.567 0.948 -0.0065 | 0.940 0.950
15 Quantiles
Continuous -0.0030 | 0.045 0.954 -0.0033 | 0.567 0.949 -0.0063 | 0.941 0.950
7-Day Time Interval -0.0030 | 0.045 0.954 -0.0033 | 0.566 0.949 -0.0063 | 0.940 0.950
30-Day Time Interval | -0.0030 | 0.045 0.954 -0.0033 | 0.563 0.949 -0.0062 | 0.941 0.951
20 Quantiles
Continuous -0.0027 | 0.046 0.953 -0.0030 | 0.562 0.949 -0.0062 | 0.940 0.950
7-Day Time Interval -0.0027 | 0.046 0.953 -0.0030 | 0.564 0.949 -0.0062 | 0.940 0.950
30-Day Time Interval | -0.0027 | 0.045 0.953 -0.0029 | 0.561 0.949 -0.0061 | 0.940 0.951
Stratify Site + Site-PS
5 Quantiles -0.0096 | 0.058 0.955 -0.0096 | 0.602 0.947 -0.0124 | 0.950 0.952
10 Quantiles -0.0034 | 0.050 0.952 -0.0034 | 0.578 0.947 -0.0065 | 0.944 0.950
15 Quantiles -0.0031 | 0.048 0.954 -0.0032 | 0.575 0.949 -0.0061 | 0.944 0.951
20 Quantiles -0.0028 | 0.048 0.953 -0.0028 | 0.576 0.949 -0.0059 | 0.946 0.951
MH Inv. Variance -0.0005 | 0.048 0.955 0.0000 | 0.537 0.948 -0.0018 | 0.930 0.950
MH BS Inv. Variance -0.0003 | 0.045 0.956 0.0003 | 0.538 0.950 -0.0014 | 0.930 0.951
Reference Estimators Not for Methods Comparison
Marginal Simulated -0.0052 0.0021 -0.0033
Unadjusted -0.1095 | 0.000 0.849 -0.1088 | 0.000 0.867 -0.1120 | 0.000 0.863
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VIl.  DISCUSSION AND CONCLUSIONS

In this final report we have proposed and evaluated 12 different Cox PH survival methods to adjust for
confounding including direct confounder adjustment and numerous variants of propensity score
adjustment and stratification. The methods that performed the best included direct adjustment,
propensity score adjustment with 10 indicator strata or more, propensity score adjustment using b-
splines, and propensity score stratification with 10 strata or more. We further showed that using site-
specific propensity scores performed equally well or better than fitting an overall propensity score.
Therefore, since site-specific propensity scores are both more feasible in Sentinel (distributed data)and
more scientifically appropriate since sites likely have different prescription patternsyielding different
exposure cohorts, having equivalent or better performanceis promising.

We further found that extending methods to the distributed data setting by aggregating censoring and
outcome time performed as well as non-distributed methods using continuous censoring and outcome
time. This finding occurred for several reasons. First, we are applying Cox PH methods which are time
invariant and only take into account time by order of outcome events and risk sets available at the time
of the event. Therefore, if an outcome occurs at day 35 it only categorizes data as being available for the
risk set after day 35. The method will give you the same result if someone was censored at day 36 as if
they were censored at day 40 given no new outcomes occurred between day 36 and 40. Since we arein
both in the rare event setting and censoring mainly happens at fixed time intervals (e.g. 30-day
prescription fills) information loss is minimized with additional aggregation of the information and does
not actually change the estimated HR that strongly and often not at all. Further, since risk sets arelarge,
given most participants do not have an event, misclassifying a handful of observations as being in the
risk set does not meaningfully change the denominator and therefore the resulting HR is not noticeably
affected. In Sentinel, if you are applying Cox PH methods with rare events de-identifying datainto 7-day
time intervals is a simple and viable approach for conducting analyses.

There were several limitations to the simulation evaluation. We only mimicked two medical product
comparisons which may be limited in generalizability. For the first example dataset, ACEl comparedto
BB on the outcome angioedema, ACEIl, the exposure of interest, had actually been on the market for a
significant amount of time when the data was pulled. Thus, ACEl use was more common than a new
medical product would normally be. We chose this comparison since it was a known positive association
between elevated rates of Angioedema and ACEIl that was published, and data were readily available to
conduct the simulation evaluation. We further included another example which was RIVA comparedto
WARF on the outcome ischemic stroke. RIVAis a new medical product which was an advantage.
Ischemic stroke in this population was relatively common which tends to allow for all methods to
perform more comparably. Another limitation of both examples for survival analysis in particular was
that most participants took the medication for a short amount of time (30 to 90 days). Potentially for
this example a binary outcome analysis may have been more appropriate especially since most of the
effect occurs shortly after exposure. An advantage of this type of shorter term exposure was that it
helped us think about the effects of censoring and how it should be mimicked in a simulation evaluation.
That is why we added censoring bumps to allow for prescribing patterns that are likely to be observed in
future Sentinel studies.

We also developed a new data simulation approach that mimics complex data using summary
information. It performed equally as well to bootstrapping and other approaches that would require
subject data to implement. This promising approach can be used by others in Sentinel and outside
networks to simulate complex data with minimal data sharing.
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Overall, this task order found that stratifying on site-specific propensity scores and adjusting for site-
specific propensity scores are methods that perform well in terms of bias, type | error, power, and
coverage. When applying these approaches, we recommend at least 10 quantiles of the propensity
score and to conduct sensitivity analyses for 15 or 20 quantiles. We further presented methods tailored
to the distributed data setting that performed as well as pooled analysis methods. Therefore, these
propensity score methods are viable to the Sentinel distributed data network and will be
straightforwardto incorporate into the system.
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IX. APPENDICES

A. SUMMARY OF PREVIOUS SURVIVAL TASK ORDER FINDINGS

A previous Mini-Sentinel workgroup (Survival Workgroup |; Task Order Pl: Cook(44)) developed and
beganto evaluate new statistical methods to sequentially monitor rare event outcomes that allow for
chronically used exposures (e.g., drugs) and events that may occur distant in time from the initiation of
drug use (e.g., acute myocardial infarction) and require survival techniques. The previous survival
workgroup concentrated their efforts on approaches using Cox’s Proportional Hazards (PH) models(3)
with direct adjustment for confounders in the regression model. They focused on methods that would
be viable in the distributed data setting (e.g. subject-level data remains at the healthcare site behind
firewalls and only deidentified data is shared across sites). Barriersto effective data sharing, such as
privacy concerns and proprietaryinformation policies, make pooling of subject-level data across sites
rarely used unless deemed critical to the question of interest. They compared two approaches: 1) Cox
PH regression adjusting for categorical confounders and aggregating survival/censoring times
(deidentified Cox PH regression) and 2) Mantel Haenszel (MH) type estimate in which a Cox PH
regression model is fit at eachsite and then the site-specific HR are pooled together using MH methods.
They showed via a brief simulation evaluation that in this setting (distributed and rare event) and given
a small number of confounders the new approaches were viable based on holding the overall type |
error and minimizing bias. They compared the new approaches to standard methods not tailored to the
Sentinel setting: 1) Cox PH regression directly adjusting for continuous confounders (non-distributed Cox
PH regression) and 2) Site-stratified Cox PH regression in which one stratifies on site while still adjusting
for other confounders in the model. The new approaches used permutation for boundary formation
which was shown to be necessary if either the outcome and/or exposure were relatively rare. Below we
briefly describe the main findings and limitations.

MAIN FINDINGS:

Under a more common outcome rate (0.05 per 10,000 study sample size yields ~500 total events), they
found that methods perform well across all scenarios studied, and that the distributed data methods
had similar power as the non-distributed data setting.

e Under a more rare outcome rate (0.01 per 10,000 study sample size yields ~100 total events),
they found that for the more common exposure rate (proportion exposed =0.50), the Cox PH
regression methods (both non-distributed and deidentified) outperformed the Site-Stratified
Cox PH regression and MH type estimates. Under less common exposure (proportion = 0.10), all
methods did not perform as well indicated by elevated type | error especially the MH method,
but also Cox PH regression adjusting directly for confounders. They then used permutation
statistical inference and found methods performed better but still some elevatedtype | error for
the distributed data approaches. Further, the MH indicated some loss of power.

LIMITATIONS:

e The previous work applied a very simple confounder model, adjusting only for two sites and
age. Age when categorized had 5 indicator variables. Thereis a need to conduct a study using
closer to real data that would be observed in Sentinel.

e |Inscenarios with more confounders, there is a need to explore methods such as propensity
scores that reduce the number of parametersto include in the model.
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e The MH method did not perform well, so we need to assess other approaches to stratification
such as propensity scores. Approaches to applying these methods in the Sentinel context
needs to be explored.

B. APPENDIX TABLES AND FIGURES FOR SECTION I

Table B 1. Pearson correlation matrixfor binary and categorical variables (n=150,000)

Site 1
HS 1+ EV 1+ CS SexF | AgeCat Year
1+ HS 1 0.436 0.331 0.014 0.077 -0.013
1+ EV 0.436 1 0.277 0.02 0.007 0.007
1+ CS 0.331 0.277 1 0.027 0.14 0.005
SexF 0.014 0.02 0.027 1 -0.014 -0.007
Age Cat 0.077 0.007 0.14 -0.014 1 0.005
Year -0.013 0.007 0.005 -0.007 0.005 1
Site 2
HS 1+ EV 1+ CS SexF | AgeCat Year
1+ HS 1 0.462 0.367 0.007 0.098 0.012
1+ EV 0.462 1 0.318 0.016 0.058 0.045
1+ CS 0.367 0.318 1 0.034 0.165 0.059
SexF 0.007 0.016 0.034 1 0.029 0.011
Age Cat 0.098 0.058 0.165 0.029 1 0.021
Year 0.012 0.045 0.059 0.011 0.021 1
Site 3
HS 1+ EV 1+ CS SexF | AgecCat Year
1+ HS 1 0.17 0.378 -0.016 0.096 0.008
1+ EV 0.17 1 0.167 0.031 -0.027 0.029
1+ CS 0.378 0.167 1 -0.014 0.181 0.038
SexF -0.016 0.031 -0.014 1 0.022 0.008
Age Cat 0.096 -0.027 0.181 0.022 1 0.048
Year 0.008 0.029 0.038 0.008 0.048 1
Site 4
HS 1+ EV 1+ CS SexF | AgeCat Year
1+ HS 1 0.091 0.394 0.018 0.114 0.003
1+ EV 0.091 1 0.123 0.035 -0.056 0.011
1+ CS 0.394 0.123 1 0.038 0.181 0.012
SexF 0.018 0.035 0.038 1 0.053 -0.004
Age Cat 0.114 -0.056 0.181 0.053 1 0.031
Year 0.003 0.011 0.012 -0.004 0.031 1
Site 5
HS 1+ EV 1+ CS SexF | AgecCat Year
1+ HS 1 0.444 0.341 0.025 0.023 0.012
1+ EV 0.444 1 0.281 0.023 -0.016 0.022
1+ CS 0.341 0.281 1 0.038 0.072 -0.005
SexF 0.025 0.023 0.038 1 -0.015 0.022
Age Cat 0.023 -0.016 0.072 -0.015 1 0.067
Year 0.012 0.022 -0.005 0.022 0.067 1
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Table B 2. Site-specific regression chain coefficients for binary covariates (n=150,000)
Site 1
Int 1+ HS 1+ EV 1+ CS
1+ HS | 0.101
1+ EV | -1.859 2.734
1+CS| -1.779 1.593 0.942
SexF | -0.069 0.008 0.064 0.114
Site 2
Int 1+ HS 1+ EV 1+ CS
1+ HS | 0.097
1+EV | -1.884 2.964
1+CS| -1.740 1.778 1.085
SexF | 0.007 -0.072 0.050 0.167
Site 3
Int 1+ HS 1+ EV 1+ CS
1+HS | 0.160
1+ EV [ -1.905 1.045
1+CS| -1.036 2.100 0.685
SexF | 0.060 -0.092 0.198 -0.055
Site 4
Int 1+ HS 1+ EV 1+ CS
1+ HS | 0.144
1+EV | -2.028 0.663
1+ CS| -1.649 2.167 0.643
SexF | -0.106 0.009 0.185 0.157
Site 5
Int 1+ HS 1+ EV 1+ CS
1+ HS | 0.107
1+4EV | -1.742 2.765
1+CS| -1.697 1.626 0.903
SexF | -0.090 0.066 0.046 0.151

Abbreviations: HS=Hospital Stay, EV=Emergency Department Visit, CS=Comorbidity Score, SexF=Female
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Table B 3. Site-specific regression chain coefficients for categorical variables (n=150,000)
Site 1 Int 1+HS | 1+EV | 1+CS | SexF 45-54 55-64 265
Age 45-54 0.069 | -0.175| -0.129 | 0.065 | -0.055
55-64 0.009 | 0.111 | -0.351 | 0.283 | -0.114
>65 -0.729 | 0.476 | -0.345 | 0.997 | -0.072
Year 2009 0.719 | -0.075 | -0.033 | -0.015 | 0.004 0.011 0.035 -0.010
2010 0.557 [ -0.115 | -0.008 | 0.000 | -0.019 0.024 0.036 0.047
2011 0.412 | -0.186 | 0.003 | 0.007 | -0.011 | -0.070 -0.002 -0.042
2012 0.296 | -0.229 | 0.109 | 0.054 | -0.043 | -0.027 0.062 0.046
Site 2 Int 1+HS | 1+EV | 1+ CS | SexF 45-54 55-64 265
Age 45-54 0.154 | -0.443 | -0.080 | 0.090 | -0.076
55-64 0.136 | -0.171 | -0.205 | 0.252 [ -0.045
>65 -0.082 | 0.282 | -0.074 | 0.937 | 0.128
Year 2009 -0.164 | -0.113 | 0.082 | 0.114 | -0.044 | -0.007 0.040 -0.022
2010 -0.412 | -0.290 | 0.205 | 0.198 | 0.023 0.016 0.035 0.052
2011 -0.636 | -0.176 | 0.184 | 0.246 | 0.084 -0.014 0.049 0.091
2012 -0.648 | -0.288 | 0.297 | 0.385 [ -0.010 | -0.099 -0.024 0.028
Site 3 Int 1+HS | 1+EV | 1+ CS SexF 45-54 55-64 265
Age 45-54 0.227 | -0.160 | -0.163 | 0.307 | -0.056
55-64 0.371 | 0.022 | -0.244 | 0.656 | -0.007
>65 1.545 | 0.255 | -0.530 | 1.149 | 0.111
Year 2009 -0.067 | -0.068 | 0.057 | 0.103 | -0.038 0.007 0.060 0.043
2010 -0.263 | -0.050 | 0.069 | 0.143 | 0.032 0.059 0.096 0.106
2011 -0.482 | -0.101 | 0.183 | 0.172 | 0.025 0.103 0.201 0.339
2012 -0.394 | -0.106 | 0.197 | 0.188 | 0.015 -0.048 0.193 0.259
Site 4 Int 1+HS | 1+EV | 1+CS | SexF 45-54 55-64 265
45-54 0.232 | -0.046 | -0.457 | -0.029 | -0.114
Age 55-64 0.219 | -0.020 | -0.730 | 0.212 | 0.006
>65 -0.137 | 0.398 | -0.658 | 1.001 | 0.252
2009 -0.153 | 0.002 | -0.002 | 0.003 | 0.036 0.118 0.132 -0.015
Year 2010 -0.248 | -0.045 | 0.031 | 0.021 | 0.033 0.050 0.108 0.013
2011 -0.310 | -0.049 | 0.049 | 0.020 | 0.011 0.013 0.047 0.147
2012 -0.389 | -0.028 | 0.093 | 0.032 | -0.047 | -0.058 0.073 0.194
Site 5 Int 1+HS | 1+EV | 1+CS | SexF 45-54 55-64 265
Age 45-54 0.324 | -0.521 | 0.086 | -0.144 | -0.192
55-64 0.311 | -0.306 | -0.148 | 0.133 | -0.104
>65 -0.750 | 0.266 | -0.331 | 0.612 | -0.139
Year 2009 0.099 | 0.196 | -0.162 | -0.031 | -0.059 | -0.124 0.013 0.149
2010 -0.278 | -0.265 | 0.017 | -0.065 [ 0.158 0.022 0.177 0.523
2011 -0.200 | 0.102 | -0.001 | -0.269 | 0.079 0.068 0.105 0.385
2012 -0.404 | 0.070 | 0.158 | -0.072 [ 0.086 -0.061 0.200 0.773
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Figure B1 a. Simulation distribution of propensity score coefficients from Site 1
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Figure B 1 b. Simulation distribution of propensity score coefficients from Site 2
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Figure B 1 c. Simulation distribution of propensity score coefficients from Site 3
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Figure B 1 e. Simulation distribution of propensity score coefficients fromSite 5
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Figure B 2 a. Site 1 simulation distributions of coefficients from Cox PH outcome model with simple

censoring (5,000 simulations)
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Figure B2 b. Site 2 simulation distributions of coefficients from Cox PH outcome model with simple
censoring (5,000 simulations)
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Figure B 2 c. Site 3 simulation distributions of coefficients from Cox PH outcome model with simple
censoring (5,000 simulations)
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Figure B2 d. Site 4 simulation distributions of coefficients from Cox PH outcome model with simple
censoring (5,000 simulations)
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Figure B 2 e. Site 5 simulation distributions of coefficients from Cox PH outcome model with simple
censoring (5,000 simulations)
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Figure B 3 a. Site 1 simulation distributions of coefficients from Cox PH outcome model with simple
censoring with points (5,000 simulations)
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Figure B3 b. Site 2 simulation distributions of coefficients from Cox PH outcome model with simple
censoring with points (5,000 simulations)
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Figure B 3 c. Site 3 simulation distributions of coefficients from Cox PH outcome model with simple
censoring with points (5,000 simulations)
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Figure B3 d. Site 4 simulation distributions of coefficients from Cox PH outcome model with simple
censoring with points (5,000 simulations)
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Figure B 3 e. Site 5 simulation distributions of coefficients from Cox PH outcome model with simple
censoring with points (5,000 simulations)
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Figure B4 a. Site 1 simulation distributions of coefficients from Cox PH outcome model with covariate
adjusted censoring (5,000 simulations)
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Figure B4 b. Site 2 simulation distributions of coefficients from Cox PH outcome model with covariate
adjusted censoring (5,000 simulations)
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Figure B4 c. Site 3 simulation distributions of coefficients from Cox PH outcome model with covariate
adjusted censoring (5,000 simulations)
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Figure B4 d. Site 4 simulation distributions of coefficients from Cox PH outcome model with covariate
adjusted censoring (5,000 simulations)
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Figure B4 e. Site 5 simulation distributions of coefficients from Cox PH outcome model with covariate
adjusted censoring (5,000 simulations)
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C. SAFETY SURVEILLANCE AND THE ESTIMATION OF RISK IN SELECT POPULATIONS: FLEXIBLE
METHODS TO CONTROL FOR CONFOUNDING WHILE TARGETING MARGINAL
COMPARISONS

1. Introduction

Electronic health records (EHR) data have provided the opportunity for new researchto improve public
health. An important national effort is the Food and Drug Administration (FDA) Sentinel initiative
program which has created a surveillance network with over 100 million patient lives to monitor the
safety of approved medical products. One of the interestsis to estimate the effect of exposure on the
overall risk of binary adverse events in a select population with comparison on the population level,
which may not be fully powered for nor be targeted at in randomized controlled trials. EMR data
provides not only sufficient sample sizes but also extensive patient features recorded over time that
allows robust and efficient inference.

Use of large scale administrative EMR data for drug safety research comes with challenges. A key
challengeis the need to control for alarge number of confounders, when drug adverse events are often
rare. Regression adjustment of many confounders for rare outcomes may have model fitting issues. In
contrast, the exposure is usually sufficient, and thus the probability of being exposed, i.e. the propensity
score, canbe predicted by the rich patient information. In such asituation, regression adjustment of the
propensity score, a one-dimensional summary score known to be sufficient for balancing the exposure
and control groups (Rosenbaum & Rubin 1983)(6), is advantageous.

In aregression model that estimates exposure effect controlling for propensity score, the adjusted
coefficient of the exposure has a conditional interpretation, i.e., a comparison of the risks among
restricted group of homogeneous patients having the same characteristics. Indrug safety research, we
are often more interested in a marginal effect and care about generalizability to the full population,
which is a combination of the exposed and unexposed groups. Such an effect is a comparison of risks
estimated using the full population containing heterogeneous patients.

To make population-level comparison, a common strategy used in epidemiology literature is direct
standardization or direct adjustment. It applies stratum-specific rates observed in the exposed and
unexposed groups to the full population in order to obtain the number of events expectedin the full
population under exposure and control, as well as estimate the population-level risks. Through this
approach, one is able to control for a confounder while targeting a population-level comparison.

One drawback of direct standardizationis that it applies to one single confounder. Regression allows us
to control for multiple confounders that are either continuous or categorical. To make population-level
comparison from a regression model, it has been proposed to take the empirical averages of the pair of
predicted risks under exposure and unexposed of each subject. Such a procedure is called
standardization,(29) but is also called G-computation, (9, 10) partial means,(19) marginalintegration, (18,
20) full imputation, (17, 32) or marginalization(13, 25)in the literature.

From the above discussion, we see that adjustment of propensity score in aregression model followed
by standardization to get back to the full population level is tailored to our particular question of
interest in the specific post-marketing drug safety surveillance setting.

It has been used in previous literature in the past decade. Austin et al. (2007)(30) and Austin (2007)(31)
compared propensity score methods and concluded that regression adjustment on the propensity score
can result in biased exposure effect. However, one limitation of their papers was that the propensity
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score was adjusted as a linear term on the probability scale, which may not capture the relationship

between the outcome and the propensity. Thus, the biased exposure effect that wasobserved could be

due to model misspecification rather than validity of propensity score adjustment. In addition, they took

the regression coefficient for the treatment as the estimated “marginal” odds ratio (hazardratio), which

is in fact a conditional effect that adjusted for the propensity score. In general, we need both flexible

methods for regression adjustment of propensity score, and comprehensive and valid simulation study

to compare causal inference methods for binary outcomes.

In this paper, we propose adjustment of B-splines of the propensity score, which corrects for the bias
from linear adjustment. We focus on binary outcomes, and use standardization to estimate the
marginal, population-level mean of the potential outcomes. With the estimated mean outcomes (mean
risks), one can obtain parametersof interest that have causal interpretation, such as risk difference, risk
ratio, and odds ratio. Section IX.C.2 provides brief background in causal inference and introduces
notation. In Section IX.C.3 we introduce the regression adjustment on propensity score method in detail
and provide an empirical estimator of the variance. Section IX.C.4 overviews existing causal inference
propensity score methods which estimate the exposure effect targeting a certain population. In Section
IX.C.5, we conduct simulation study to compare the flexible regression adjustment of propensity score
with existing causal inference methods. We provide discussion and future work in Section Section IX.C.6.

2. Background in Causal Inference

a. ThePotential Outcomes Framework

Causation is inferred by any observed difference between the mean outcomes under exposure and
control holding everything else the same. Accordingly, for each subject i, we define a pair of estimands
(Y;(1),Y;(0)) as the outcomes that would be observed under exposure and control, called the potential
outcomes. Denote the binary exposure as X;,i = 1, ..., n for subject i, taking on value 1 (exposed) or 0
(unexposed). For each subject, only one of the potential outcomes is observed, i.e., the observed
outcome Y = Y(1) if exposed (X = 1) with Y(0) missing, and Y = Y(0) if unexposed (X = 0) with Y(1)
missing.

b. TheStronglylgnorable Treatment Assignment Assumption

The gold standard for estimating a causal effect is to conduct a randomized controlled experiment, in
which the exposed and unexposed groups are balanced. In particular, the mean of observed outcome in
the exposed group, E[Y|X = 1], will be equal to the mean of potential outcome under exposure in the
entire population, E[Y(1)]. Thus, one can directly estimate the population average using the observed
portion.

In observational studies, however, differences in the outcomes between the two arms could be due to
both pre-existing systematic differences and the drug effect. In the presence of confounding effectsin
observational studies, Rosenbaum and Rubin (1983)(6) proposed the strongly ignorable exposure
assighment assumption, which is (Y(l),Y(O)) 1 X|Z, where Z denotes the baseline covariates. It states
that treatment assignment is independent of the potential outcomes conditional on the observed
baseline covariates. It allows one to estimate the within-strata average of potential outcomes using the
observed portion, as if one conducted randomization within each stratum. That is, within a stratum of Z,
we have that exposed and unexposed groups are balanced, and thus the observed portion is
representative of the entire stratum.
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c. ThePropensity Score

The propensity score is the probability of being exposed given the subject's characteristics, i.e. S =

P[Z = 1|X] (Rosenbaum & Rubin 1983(6)). It has two important roles. First, it isa summary score that
reduces the dimension: it summarizes a vector of the baseline covariatesaccording to how predictive
they are for measuring exposure-proneness, into a scalar. Second, it is a balancing score: conditional on
the propensity score, the baseline covariatesare similar between exposure and control groups. In
practice it is often estimated assuming a logistic regression model and therefore S'i =(1+ exp(y?ZJ)‘1

d. Causalinferencein Observation Study

Causal inference is a comparison of the population-level average of the potential outcomes. The most
common form of comparison is the mean difference, i.e., the causal exposure effectis measured as the
average treatment effect, ATE=E[Y(1)] — E[Y(0)], or the average treatment effect on the treated,
ATT=E[Y(D)IX = 1] — E[Y(0)|X = 1].

With estimating the population average of potential outcomes as the ultimate goal, causalinference
methods either provide a balanced population that mimics one from a randomized experiment, or
impute the unobserved potential outcomes. A review of causal inference methods using the propensity
score will be provided in Section IX.C.4.

3. Standardization Using Flexible Propensity Score Regression

In this section we propose a method that flexibly adjusts for confounding using a propensity score, but
then is able to standardize to any marginal estimand of interest. This is similar to standardization with
direct adjustment for confounders(9, 10) that will be discussed in Section IX.C.4 except that we have
further incorporated a propensity scores flexibly in the model to reduce the dimensionality of the
confounder adjustment while attempting to minimize model assumptions. We further have derived
variance estimates that incorporate the variability due to the estimation of the propensity score.

a. Generalized Partially Linear Model

We propose a generalized partially linear outcome model as follows,
g(B[Y:[x;,8:]) = o(8;) + BX;,

where S = P[X|Z] is the estimated propensity score, a(+) is an unknown and potentially nonlinear
function that adjusts for confounding effects, 8 is the conditional exposure effect, and g(-) is a link
function. For binary outcomes g(-) is often the logit link function and the propensity score is also
estimated using a logistic regression model.

To estimate the nonlinear function a(S), we apply a nonparametric regression technique, the
polynomial spline regression. (5, 14) A spline is a piece-wise polynomial function thatis smooth at the
joint of each piece, called the knot. Any spline function on a given set of knots can be expressed as a
linear combination of B-splines. Thus, we generate a set of B-spline basis functions, B(S) =

[B1(S), ..., Bk(S)] then fit the outcome on the basis functions and the exposure indicator. The potential
outcomes under being exposed and unexposed for each subject i are thus predicted as

ElvIsil= g7 (B +B(S)a)
Elv0Is]= g7 (B(S)a)
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The to obtain a population average effect we use a standardization/G-Computation approachto obtain
the following population-level average of the potential outcomes,

pr= E[Y(D]= Zg‘l(ﬁ+3(5)a)

~ 1 A
bo E[Y<o>]=gzg—1(s(si)a)

which will be used for causal comparison. For binary outcomes, we plug in such estimated mean risk to
estimate the parameter of interest such as the risk difference, the relative risk, or the odds ratio.

b. Variance Estimation Incorporating Uncertainty of the PropensityScore

To derive the variance of this flexible standardized model thereis a need to incorporate the variability of
the propensity score, the variability due to flexibly regressing the propensity score onto the outcome,
and variability due tothe standardization step to the population-level estimand. Hahn & Ridder
(2013)(38) studied inference for a generalthree-step estimator and derived an influence function that
incorporates the uncertaintyin each of the steps. We follow their proposed procedure and derived the
following variance estimates.

The variance estimator for risk difference (RD)is
1 — — \2
2, (IFy = TFy),
for log risk ratio (RR)is
2
1 n IFy; IRy
nz ( P1 ﬁo) !
and for log odds ratio (OR) is
dyn ( TFyy  _ TFy; )2
n2 S=1\pi(1-p1)  Po(1-Po)
where IFy; = E[Y;(DIZ;] - p, + (Y E[Y;(1)|Z;]) and IFy; = E[Y;(0)IZ;] — p, +ﬁ (Y, —
E[v,(0)1Z;]).

See Appendix for details of the derived variance estimation. When the outcome is rare, it could be
difficult to directly estimate the variance and therefore bootstrap-based variance estimators may be
needed. We will compare the performance of the empirical estimator and the bootstrapped variance
estimator via simulation in Section IX.C.5.

4. Propensity Score Methods for Binary Outcomes

In this section, we review existing methods for estimating a population-level meanrisk, which will be
plugged in to estimate a population-level risk difference, risk ratio, or odds ratio. Recallthatin Section
IX.C.2.d we briefly introduced the main ideas in causalinference methods. As will be discussed in detail
below, propensity score matching and propensity score stratification are two methods that mimics
randomization to achieve balance in the two arms and thus make fair comparison; the inverse
probability of treatment weighting reweightsto a pseudo-population thatis also balanced; the
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regression based standardization method and the doubly robust estimator predicts the missing potential
outcomes to make comparison using mean estimated from all subjects in the population.

a. Propensity Score Matching

The propensity score matching method mimics the randomized study by selecting a subpopulation,
which includes matched sets of exposed and unexposed subjects sharing similar propensity scores. One
common application of matching is to match each exposed participantto M unexposed participants.
Then one would use regression to estimate the marginal causal estimand of interest. Specifically, if
interest is in the marginal odds ratio one would fit a logistic regression model using data from the
matched subpopulation and only include the indicator of exposed or unexposed in the model. Note that
the matched subpopulation contains subjects with characteristics similar to the exposed arm. Thus, the
estimated causal effect is in fact the average treatment effect on the treated (ATT).

In practice, applying propensity score matching involves several decisions to make. First of all, one needs
to decide the value of M, as well as a caliper that defines the tolerance of the difference in propensity
scores for a matched pair. It wasdiscussed in simulation studies that increasing M tended to increase
the bias but decrease the sampling variability of the estimate (Austin 2010)(34). The caliper canbe
decided in practice by checking the covariate balance as well as number of subjects in the matched
dataset.

Second, one needs to choose a sampling method, i.e., with or without replacement. For matching
without replacement, each unexposed subjected can be used at most once. For matching with
replacement, a pseudo-population thatis closest to the exposed population is generated. However, it is
hard to interpret the result, and the possibility of including duplicated subjects needs to be accounted
for when estimating the variance.

Third, matching has been implemented in several packageswrittenin different statistical programming
languagesincluding R, SAS, and STATA. Each package has its own choice of algorithms and may
therefore give different results. It is important to understand which algorithmis being used. Since the
matching procedure does not involve the outcome, one could try multiple methods and select the best
matched dataset according to covariate balance and size of the matched sample.

Last, for estimating the odds ratio, one could use the conditional logistic regression which fits the
regression model acknowledging the fact that matched sets include similar subjects. However, the
quantity being estimated becomes a conditional odds ratio, conditional on the matched set of similar
subjects. The conditional logistic regression is implemented by applying the Cox proportional hazard
model with tied survival times for subjects within the same matched set. There are different methods
for dealing with tied survival times, depending on whether the likelihood function writtenin exact form
or approximated form. The choice of methods affectsthe computation time and more importantly, the
bias of the estimate, so sensitivity analysis on choice of methods for ties is recommended.

b. Stratification on Propensity Score

Propensity Score stratification, also referred to as subclassification, cuts the propensity score into strata
according to its quantile, and then divides the population into equal-size subclasses of subjects having
propensity score within the same strata (Rosenbaum & Rubin 1984)(7). Extreme subclasses with zero
(un)exposed subjects will be non-informative and discarded, which is analogous to unmatched subjects
in propensity score matching. Compared to matching, the stratification on propensity score also mimics
randomization by achieving balance within subclasses. However, it includes more observations than
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matching which reduces variance at the potential price of increased bias. The trade-off between bias
and variance s controlled by the number of strata. Anextreme case, for example, when the number of
stratais equal to the number of matched pairs, some subclasses will have zero (un)exposed subjects and
be discarded, and stratification and matching may result in similar estimates and datasets.

The common estimator following stratification is a weighted average of the quintile-specific odds ratios.
For example, one weighting scheme leads to the Mantel-Haenszel estimator (Mantel & Haenszel
1959)(1). Adjusting for indicator of strata using a (conditional) logistic regression is another way to apply
stratification for control of confounding. However, as mentioned in Section I1X.C.4.a, conditional logistic
regression will estimate a conditional odds ratio. Marginalization methods following regression will be
introduced below in Section IX.C.4.d, which allows one to estimate a marginal causal odds ratio from a
regression model.

c. InverseProbability of Treatment Weighting (IPTW and Augmented IPTW)

Another way to achieve balance in the population is to reweight every subject to create a pseudo-
population in which every (un)exposed pseudo-subject has equal possibility of being (un)exposed, which
is representative to one from a randomized study. This is called the inverse probability of exposure

weighting (IPTW).(26) A commonly used weight is the inverse of the propensity score, that s, to use si if

1

subject i is exposed and ﬁ if subject i is unexposed. The idea behind using inverse probability is: for
—9oi

patients with a high S, they are more likely to be observed in the exposure group and more rarely seen

. N 1. .

in the control group, so using Sin the exposure group and N the control group will make the number

of patientswith the same value of S to be similar in the two groups. In other words, to achieve balanced
groups of patients.

The idea of weighting is not new. In fact it has been widely used to achieve an estimator that is
generalizable toa target population, especially in survey research.(21) To estimate the risk difference,
one can take the weighted sum of the observed outcomes. To estimate the odds ratio or risk ratio, one
can use a weighted generalized linear model to fit the outcome on exposure. Note that since the
pseudo-population is balanced in terms of propensity score, and the only covariate in the model is the
exposure, the estimated coefficient of the exposure is a marginal, causal effect.

A well-known problem with IPTWis the instability from inverting the estimated propensity score.
Stabilized weights have been proposed (Robins et al. 2000)(26). A trimming approach, which truncates
weight using either a pre-specified threshold or a quantile is also widely used in practice (Potter 1990,
Potter 1993)(12, 16) and we will implement this in our simulation study in Section IX.C.5.

Simple IPTW requires that the propensity score must be correctly specified. To relax this assumption the
Augmented IPTW (AIPTW) approach was proposed that developed a doubly robust estimator building
on both the propensity score model and the outcome regression model (Robins et al. 1994, Bang &
Robins 2005)(26, 27). Itis doubly robust because it only requires either the propensity score model or
the outcome model to be correctly specified. In addition, it was shown to be efficient among a class of
semiparametric estimators, because it takes the efficient influence function as the estimating equation
(Hahn 1998)(24). However, since the estimation of the outcome model is required there may be issues
in the rare event setting relative to other methods. In the simulation approach we will only show the
Augmented IPTW method since actual method performance between IPTW and Augmented IPTW was
very comparable exceptin the case when the propensity score model was misspecified and Augmented
IPTW performed better as expected.
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d. Standardization with Direct Covariate Regression

As outlined in Section IX.C.3 standardization after regressionis a viable approach to estimate marginal
estimands. We proposed the incorporation of a flexible propensity score model in the outcome
regression model. However, the standard approachis to instead use a simpler two-step process which is
also known as G-computation (Robins 1986, Robins 1987).(9, 10) The first step is to build an outcome
regression model with both exposure and all confounders in the model

g(ElY;|X;, Z;]) = BX; + aZ;.

Then standardization (Step 2) is done by simply taking the average of the predicted potential outcomes
for all subjects in the population as outlined in Section IX.C.3. Then the estimated causal effectis a
comparison of the marginal, population-level means, obtained by plugging in the marginalized mean
into risk difference, risk ratio, or odds ratio.

Note that this is similar to the method proposed in Section IX.C.3 except there is no estimation of the
propensity score and the confounders are directly regressed on the outcome. Therefore, application of
this method in the rare event setting may be problematic which will evaluate in the simulation study.

5. Simulation Study

We performed a simulation study to investigate the performance of the different methods outlined in
Section IX.C.3and 4 to estimate a marginal OR. We chose to estimate a marginal OR since it is the most
common estimand of interest in observational cohort studies. Our simulation study will mimic real data
from a study comparing the effect of angiotensin-converting enzyme Inhibitors (ACEl) and beta blocker
(BB) on incidence of angioedema in 30 days from the FDA Sentinel Initiative.

The marginal OR estimatorsto be compared are the following: (1) 1-1 matching on the propensity score
without replacement; (2) Augmented IPTW, with parametric models for exposure and outcome, both
adjusting for all covariates with trimmed propensity score using 5% tail as the threshold; (3)
Standardization with direct covariate regression; (4) Standardization with regression on linear
propensity score adjustment; (5) Standardization with regression on propensity score deciles; and (6)
Standardization with flexible regression of the propensity score using B-spline basis functions (here we
used cubic spline with one inner knot). We chose the first 3 methods since they are standard approaches
used for estimation of a marginal OR. We chose approach 4 because this method has been shown to be
biased in other simulation studies and therefore we were interested to assess for our simulation
scenario if these findings still held. We chose approach 5 with standardization with regression on the
propensity score deciles to be able to compare if the more flexible propensity score adjustment
(approach 6) improved over this method.

Performance of approaches was assessed in termsof mean bias on log OR scale, type | error, and power.
For each scenario assessed we used 8000 simulated datasets.

a. Simulation Setting

We generate a population of 100,000 subjects mimicking data from the ACEl and BB example.
Specifically, there are nine binary clinically relevant covariates (NSAIDS, aspirin, ORAL-CS (optimizing
recovery after laparoscopic colon surgery), allergic reaction, diabetes, heart disease, Ischemic HD,
inpatient hospitalization, and gender) and one categorical variable which is age category with four
levels, corresponding to three dummy variables (binary indicators). See Table C 1Error! Reference
source not found. for prevalence of each confounder.
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Table C 1. Prevalence of each confounder andrelationship between exposure (ACEl and BB) and
confounders for different simulation scenarios (propensity score model)

Propensity Score Model Odds Ratios
% Observed Observed+ Stronger Stronger+
Propensity | Age*Diabetes | Propensity | Age*Diabetes
Interaction Interaction
Heart Disease 0.3 0.55 0.55 0.41 0.41
Aspirin 1.4 0.54 0.54 0.40 0.40
Ischemic HD 6.3 0.23 0.23 0.11 0.11
OptRec Colon Surg 8.0 0.85 0.85 0.78 0.78
Allergic Reaction 8.4 0.33 0.33 0.19 0.19
Inpatient Hosp. 10.5 0.86 0.86 0.80 0.80
NSAIDS 12.2 0.95 0.95 0.93 0.93
Diabetes 15.6 3.00 - 5.20 -
Female 47.3 0.51 0.51 0.36 0.36
Age(Ref: 18-44)
45-54 32.5 1.49 - 1.82 -
55-64 27.6 1.37 - 1.60 -
65-99 7.4 1.08 - 1.12 -
Age*Diabetes (Ref: 18-44 and Not Diabetic)
45-54 & Not Diabetic 27.4 1.49 1.82
55-64 & Not Diabetic 23.3 1.37 1.60
65-99 & Not Diabetic 6.2 1.08 1.12
18-44 & Diabetic 5.1 3.00 5.20
45-54 & Diabetic 5.1 7.37 15.58
55-64 & Diabetic 4.3 6.78 13.74
65-99 & Diabetic 1.2 5.34 9.62

To simulate the ACEl and angioedema dataset, we generated

(1) Categorical covariates Z that have the same mean and pairwise covariance as what are observed
from the real data;

(2) Binary exposure X (ACEl = 1 and BB = 0) generated based on a logistic regression on the covariates
(the propensity score model), using the coefficients observed from fitting the real data. For all cases, we
hold the prevalence the same as the real data (65% ACEI). (Table C 1Error! Reference source not found.
Observed Propensity)

(3) A pair of binary potential outcomes (Y(1),Y(0)) (angioedema within 30 days under exposure and
control for the same subject) based on a logistic regression on the exposure and covariates (the
outcome regression model), using the coefficients observed from fitting the real data. The observed
outcome is thus Y = XY(1) + (1 — X)Y(0). For all cases, we hold the event rate in the control group (BB
group) the same as the real data, which is equal to 0.05%. (Table C 2 Observed Outcome Regression
Model).
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Table C 2. Relationship between outcomes given the exposure (ACEl and BB) and confounders

Outcome Model (OR)
Observed Observed+
Model Age*Diabetes
Interaction

Confounders
Heart Disease 1.13 1.13
Aspirin 1.38 1.38
Ischemic HD 1.07 1.07
OptRec Colon Surg 1.58 1.58
Allergic Reaction 1.54 1.54
Inpatient Hosp. 2.18 2.18
NSAIDS 0.93 0.93
Diabetes 0.73 -
Female 1.63 1.63
Age(Ref: 18-44)
45-54 1.08 -
55-64 0.84 -
65-99 0.92 -
Age*Diabetes (Ref: 18-44 and Not Diabetic)
45-54 & Not Diabetic 1.08
55-64 & Not Diabetic 0.84
65-99 & Not Diabetic 0.92
18-44 & Diabetic 0.73
45-54 & Diabetic 0.48
55-64 & Diabetic 0.37
65-99 & Diabetic 0.41
Exposure
ACEI 2.51 2.51

In addition, we increase the strength of confounding by scaling up the coefficient in the propensity score
model (multiply coefficients on the logOR scale by 1.5), while still holding the exposure prevalence and
the baseline event rate the same (Table C 1). We also allow the propensity score model or the outcome
regression model that generatesthe potential outcomes to include interaction terms between age and
diabetes, to look at cases when the methods misspecify one of the models by missing the interaction
(Table C 1 and Table C 2 Adding Interactions). Note that the outcome regression model on the
propensity score hardly yields a function of covariatesthat matches the underlying data-generating
model. So (mis)specification refers to methods that use regression models that actuallyfit on the
covariates. For example, the regression on propensity score can use a misspecified propensity score
model, which will make the propensity score be estimated with error and lose the balancing property to
some extent; the augmented IPTW method can use misspecified propensity score model and/or
misspecified outcome regression model.
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We emphasize that the event rateis 0.05%, which yields about 50 angioedema incidences among the
100,000 subjects. We have twelve binary indicators including nine binary variables and three indicators
for age category. When the exposure rate is 65%, for matching methods, there is going to be less control
subjects than exposed subjects. We have also simulated the case when the exposure rareis 20%, which
is more commonly seen, although it might result in a smaller matched dataset.

b. Results

Table C 3 shows the mean bias on the log(OR) scale, type | error, and power when the correct
propensity score model and outcome regression model are specified. For matching methods, we
calculate the bias assuming the ATT estimate.

In terms of bias, standardization with propensity score B-Splines performed similar to standardization
with covariate adjustment. In settings when there is strong confounding effect with an exposure rate of
65%, or when the exposure rate is 20% under both moderate and strong confounding, standardization
with propensity score B-Splines outperformed traditional methods, and also corrected the bias from
adjusting for the propensity score as a linear term. However, when there is moderate confounding
effect with an exposure rate of 65%, we observe similar biases between propensity score B-Splines and
propensity score linear adjustment, and the augmented IPTW performs slightly better. The augmented
IPTW had substantial increase of bias when the exposure rateis 20%, which is further from 50%
compared to 65%. This is an evidence of sensitivity to inverting a propensity score that is closer to zero.

All methods had similar type | error and power except that matching had lower power. In particular,
when the exposure rate is 20%, matching had much lower power, which can be due to a smaller size of
the matched sample (at most 40% of full population matched). The valid type | error and high power
showed that the direct estimation of variance is a fast and valid approach for inference.
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Table C 3. Bias and Power in estimating the marginal OR by method ranging the strength of
confounding andrelationship between exposure and outcome

Original Confounding Strong Confounding
log(OR)=0 log(OR) = 0.92 log(OR)=0 log(OR) = 0.94
Methods Bias* | Typel Bias | Power | Bias | Typel | Bias | Power
error error
Exposurerate=65%
Matching -0.034 | 0.018 |-0.023 [ 0.894 | 0.012 | 0.023 | 0.027 | 0.896
Augmented IPTW -0.010 | 0.017 | -0.004 | 0.931 | 0.017 | 0.030 | 0.029 | 0.890
Standardization
Covariates -0.012 | 0.016 |-0.010 | 0.938 | 0.015 | 0.024 | 0.019 | 0.884
PS Linearly -0.013 | 0.018 | 0.007 | 0.942 | 0.014 | 0.029 | 0.044 | 0.888
PS Deciles -0.030 | 0.016 |-0.028 | 0.934 | -0.005 | 0.024 | -0.003 | 0.876
PS B-Splines -0.013 | 0.016 |-0.009 [ 0.938 | 0.013 | 0.025 | 0.019 | 0.884
Exposurerate=20%
Matching -0.060 | 0.030 |-0.061 | 0.548 | -0.023 | 0.030 | -0.010 | 0.535
Augmented IPTW -0.124 | 0.047 | -0.046 | 0.740 | -0.167 | 0.074 | -0.069 | 0.674
Standardization
Covariates -0.082 | 0.044 | -0.027 | 0.753 | -0.075 | 0.064 | -0.022 | 0.722
PS Linearly -0.082 | 0.043 |-0.037 | 0.743 | -0.076 | 0.064 | -0.049 | 0.701
PS Deciles -0.095 | 0.043 | -0.040 | 0.741 | -0.094 | 0.065 | -0.038 | 0.709
PS B-Splines -0.083 | 0.043 |-0.028 | 0.751 | -0.078 | 0.069 | -0.025 | 0.722

*mean bias on the log OR scale

Table C 4 shows the mean bias on the log(OR) scale, type | error, and power when the propensity score
model is misspecified by missing the interactionterm. Table C 5 shows the mean bias on the log(OR)
scale, type | error, and power when the outcome regression model is misspecified by missing the
interactionterm.

In both tables, we observed similar results in terms of bias as Table C 3, although misspecification of
outcome regression model seemed to have more impact on the performance of the methods. The
biases of standardization methods using either covariate adjustment or propensity score adjustment
were slightly higher due to misspecification of models. The augmented IPTW method had less increase
or even decrease in bias under model misspecifications, but the performance was unstable, due to large
number of covariates and rareness of the outcome. Adjusting for propensity score deciles also had an
unstable performance across all tables, having smaller bias under strong confounding and 65% exposure
rate, but larger bias otherwise. The performance of adjusting for propensity score strata indicators or
propensity score B-spines is sensitive to the degree of freedom determined by number of strata or
number of B-spline basis functions. In practice, we suggest using cross-validation to select a valid
number.
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Type | error and power were similar comparing Table C 4 and Table C 3. However, in Table C5 there was
notable power loss under strong confounding. Again we see that matching had lower power than all
other methods due to insufficient sample size.

Sentinel,

Table C 4. Bias in estimating marginal OR when true propensity score model has interactions

Original Confounding Strong Confounding
log(OR)=0 log(OR) = 0.92 log(OR)=0 log(OR) = 0.94
Methods Bias* | Typell Bias | Power | Bias | Typel Bias | Power
error error
Exposurerate =65%
Matching -0.037 | 0.018 | -0.026 | 0.900 | 0.017 | 0.026 | 0.030| 0.891
Augmented IPTW -0.014| 0.018 | -0.007 | 0.935| 0.017 | 0.028 | 0.026 | 0.889
Standardization
Covariates -0.016 | 0.014 | -0.012 | 0.946 | 0.016 | 0.026 | 0.018 | 0.881
PS Linearly -0.017 | 0.016 | 0.004 | 0.948 | 0.016 | 0.031| 0.042 | 0.885
PS Deciles -0.031| 0.015| -0.029 | 0.940 | -0.003 | 0.024 | -0.003 | 0.872
PS B-Splines -0.016 | 0.015| -0.012 | 0.945| 0.015| 0.027 | 0.018 | 0.879
Exposurerate =20%
Matching -0.062 | 0.029 | -0.062 | 0.548 | -0.029 | 0.029 | -0.018 | 0.528
Augmented IPTW -0.116 | 0.049| -0.042 | 0.745| -0.172 | 0.076 | -0.069 | 0.668
Standardization
Covariates -0.083 | 0.043 | -0.027 | 0.754 | -0.077 | 0.067 | -0.027 | 0.716
PS Linearly -0.083 | 0.042 | -0.037 | 0.746 | -0.078 | 0.065 | -0.054 | 0.691
PS Deciles -0.095| 0.041| -0.039 | 0.742 | -0.096 | 0.066 | -0.043 | 0.702
PS B-Splines -0.084 | 0.043 | -0.028 | 0.752 | -0.080 | 0.070| -0.029 | 0.716
*mean bias on the log OR scale
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Table C 5. Bias in estimating marginal OR when true outcome model has interactions
Original Confounding Strong Confounding
log(OR)=0 log(OR) = 0.92 log(OR)=0 log(OR) = 0.94
Methods Bias* | Typel Bias Power | Bias | Typel Bias Power
error error
Exposurerate =65%
Matching -0.047 | 0.017 -0.035| 0.888 | -0.156 | 0.026 -0.140 | 0.701
Augmented IPTW -0.018 | 0.016 -0.011| 0.925| -0.079| 0.036 -0.070 | 0.747
Standardization
Covariates -0.020 | 0.015 -0.017| 0.935| -0.081( 0.033 -0.080 | 0.735
PS Linearly -0.021 | 0.017 0.003| 0.939| -0.087| 0.041 -0.057 | 0.751
PS Deciles -0.034 | 0.016 -0.031| 0.932| -0.098 | 0.037 -0.097 | 0.720
PS B-Splines -0.021 | 0.015 -0.016| 0.935| -0.084 | 0.036 -0.080 | 0.736
Exposurerate=20%
Matching -0.065 | 0.031 -0.065| 0.543 | -0.175| 0.028 -0.154 | 0.340
Augmented IPTW -0.126 | 0.047 -0.047 | 0.735| -0.264 | 0.105 -0.108 | 0.461
Standardization
Covariates -0.089 | 0.042 -0.030| 0.746 | -0.155| 0.086 -0.054 | 0.531
PS Linearly -0.090 | 0.042 -0.038| 0.735| -0.152 | 0.086 -0.073 | 0.513
PS Deciles -0.101 | 0.041 -0.041| 0.733 | -0.173 | 0.089 -0.069 | 0.517
PS B-Splines -0.091 | 0.043 -0.031| 0.744 | -0.156 | 0.089 -0.056 | 0.537

*mean bias on the log OR scale
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6. Discussion

In this paper, we have shown that there is great potential in using regression adjustment of the
propensity score to estimate causal effects for rare binary outcomes, which fits in the postmarket drug
surveillance research. We pointed out that although the propensity score is sufficient in balancing the
confounders between exposure groups, regression adjustment directly using the propensity score as a
covariate can result in bias, whereas a fast and simple correction of the bias comes from fitting flexible
spline function of the propensity score.

Simulation study showed that flexible adjustment of propensity score in an outcome regression model
resulted in less bias without loss of efficiency, and can outperform traditional methods when the
propensity score model is correctly specified. When the propensity score was misspecified, regression
adjustment of propensity score can have larger bias, but still performs comparably

to most methods. The augmented IPTW method performed better in such a situation, but might suffer
from convergence problem with larger number of covariatesdue to rareness of the outcome. When the
outcome regression model was misspecified, the augmented IPTW still had less bias, but sometimes
very larger variance.

With non-rare exposure and a large cohort, if one is confident in doing a good job in fitting the
propensity score model, we suggest fitting the propensity score model as a first step, and then use
flexible regression adjustment of propensity score instead of using traditional propensity score methods
such as matching and augmented IPTW. Although the augmented IPTW estimator can outperform all
methods under strong confounding effect, in general, it requires fitting the outcome regression model
and inversion of the propensity score, which makes it less stable. In addition, we also suggest fitting on
propensity score deciles as a sensitivity analysis as it fits another nonlinear function of the propensity
score and can perform well when the confounding effect is strong.
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