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I. BACKGROUND, OBJECTIVES AND RECOMMENDATIONS FROM THE TASK 
ORDER 

This is the final report summarizing the goals, methodologies and findings of the Sentinel Survival 
Workgroup 2 task order. The main objective of this working group was to evaluate statistical methods 
for controlling confounding when using Sentinel claims data to estimate the hazard ratio of a chronic 
exposure on a binary, potentially rare, outcome. All analyses use time to event Cox Proportional Hazards 
models that can account for varying follow-up time. Different methods to control for confounding are 
considered in this work order, more specifically propensity score regression and propensity score 
stratification. These methods are considered in a distributed data setting with a constraint of no sharing 
of subject level information between sites but where sharing of some summary level information is 
possible. The test cases, interim and final goals of this working group are shown in Figure 1 and 
discussed in the remainder of this section. 

This report compares the performance of multiple methods with simulated data in realistic scenarios. To 
generate these realistic scenarios, this workgroup built a simulation tool described in Section II. The 
simulation framework is a two-stage process. The first stage extracts summary level information from 
subject-level real world data. The second stage generates subject level data from summary level 
information. The resulting simulated data mimics real world settings like Sentinel with complex 
relationships between confounders, exposure of interest, and outcomes. Key aspects include simulating 
numerous confounders that can be related to each other, different exposure and confounder 
relationships, and outcome relationships with complex censoring and outcome distributions. This 
simulation framework was used to generate data to compare different methods throughout the rest of 
the report.  

In Section III we present different methods for control of confounding and estimating risk for the non-
distributed data setting. Then, we report performance of these methods in Section IV from a simulation 
evaluation. The simulation specifications were anchored to two real examples: 1) ACE and angioedema 
and 2) Rivaroxaban and Ischemic Stroke, but only for non-distributed data setting methods. In Section V 
we present methods viable for the distributed data setting extending the most promising non-
distributed data approaches. Finally, Section IV shows a simulation evaluation using the real data 
examples as anchors.  

Appendix C shows results of related work on binary outcomes rather than time to event outcome. This 
work evaluates statistical properties of the proposed propensity score methods in this task order as well 
as exposure matching and IPTW methods that are not included in this task order.  

Some of the methods that are compared are not fully implemented in Sentinel. Thus, the regulatory aim 
of this workgroup is to provide advice on which methods are appropriate for certain specifications of 
exposure, outcome prevalence and variability between sites. Further, the new simulation tool can now 
be replicated by researchers in both Sentinel and outside of Sentinel who are interested in comparing 
methods for survival outcomes. By allowing for correlated and complex confounder relationships the 
tool makes it easier for researchers to simulate more realistic data including claims data.  

We focused on methods that estimate a conditional hazard ratio (HR) and not methods that estimate a 
marginal time average HR such as exposure matching or inverse probability of treatment weighting 
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(IPTW). Methods which estimate marginal HR are investigated in other Sentinel working groups1. 
Simulations in Section IV and Section VI support using 10 PS strata rather than 5 PS strata as a preferred 
default for PS stratification. Similarly, in PS regression, using PS indicators for 10 strata performed well 
and using splines on the PS score had better properties. 

To determine the scope of methods considered in this workgroup, we relied on what was known in the 
literature and filled some gaps. Austin 2014(41) compared exposure matching, IPTW, stratification, and 
regression on the propensity score (PS) for estimating marginal and conditional HRs. The simulations in 
the paper showed that IPTW and exposure matching were unbiased for the marginal time average HR, 
with IPTW being more efficient than 1:1 PS exposure matching. Moreover, the author showed that 
stratification and regression were biased in estimating the conditional HR.  

A limitation of the findings in this paper is that the author investigated PS stratification with only 5 strata 
which probably explains the large observed biases due to residual confounding.  Using PS quintiles or 5 
PS strata is a recommendation from the past 20 years because it can eliminate up to 90% of bias due to 
measured confounding. However, recent work  has shown that 5 strata is often not sufficient to control 
for confounding (33) with  recommendation for using as many as 10 strata in an analysis.(46)  Larger 
number of strata can reduce up to 95% of the bias, a more current standard nowadays with richer 
datasets available to estimate smaller safety risks considered the standard.(8, 36)(4) Our simulation 
evaluation in Sections IV and VI show that we have similar results reducing bias between 96-99% when 
stratifying on 10 PS strata by site. We recommend from both literature and our simulation evaluation 
presented in this report that at least 10 PS strata should be used and sensitivity analyses in which 15 or 
20 PS strata are used to assess if residual confounding still persists. However, some caution should be 
taken for too many strata if most strata become too sparse.(39)    

Another issue with methods in Austin was the application of PS regression adjustment using either a 
linear PS term or adjusting for 5 propensity score stratum indicators. Assuming a linear relationship 
between the propensity score and the log hazard is likely not the correct model specification and 
therefore may lead to residual confounding. We show throughout this document that adjusting for 
splines was a straightforward approach to fix this issue. However, in the distributed data setting splines 
are likely not feasible since they require subject level propensity score data. Adjusting for 5 propensity 
score indicators may not be enough to provide the flexibility needed in the propensity score model, 
depending upon the amount of confounding and distribution of the propensity score. This mirrors the 
issues with bias when only stratifying by 5 propensity score strata. We find in our simulation study that 
at least 10 strata were needed when doing propensity score adjustment. Therefore, similar to 
propensity score stratification, when doing propensity score adjustment, we recommend use of a 
flexible modeling approach like splines, or to use at least 10 quantile strata for adjustment, with 
sensitivity analyses for 15 or 20 strata.  

A final issue with Austin1 is that his simulation was not anchored in real examples and did not consider 
censoring. This motivated our analyses to mimic extensive censorings observed in post-market safety 
surveillance in electronic healthcare data.  

                                                             
 

1 https://www.sentinelinitiative.org/sentinel/methods/evaluation-propensity-score-based-methods-sentinel-
study-settings-using-simulation 
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This work follows from previous a Mini-Sentinel workgroup (Survival Workgroup I; Task Order PI: 
Cook(44)), further described in the Appendix A. 

Figure 1. Test cases, interim and main goals of the survival working group 

 

II. SIMULATING REALISTIC TIME-TO-EVENT DATA USING SHAREABLE SUMMARY 
INFORMATION THAT PROTECTS DATA PRIVACY 

A. INTRODUCTION 

There has been a rise in the use of large complex observational cohorts to address comparative 
effectiveness and safety research questions, primarily due to the development of collaborative research 
and data networks. Examples of such national research networks include the Health Care Systems 
Research Network (HCSRN), the Food and Drug Administration’s Sentinel Initiative  (FDA’s Sentinel 
Initiative), and the emergent Patient-Centered Outcomes Research Network (PCORnet). Each of these 
data networks is comprised of an assemblage of partner organization that collect electronic health and 
claims data as part of their operations, but not necessarily for the purpose of research or medical 
product regulation. The FDA’s Sentinel initiative, with its focus on postmarket safety surveillance, is 
especially interesting from a statistical perspective.  

The standard approach to evaluating statistical methods is to conduct simulation experiments probing 
for scenarios that result in loss of accuracy, precision and/or power. As discussed by Franklin, et al. 
(2014)(42) there are a number of reasons why it may be advantageous to connect the data generation 
mechanism used in a simulation to an actual empirical study. Using data from existing empirical studies 
to inform data generation is useful in narrowing the focus of a simulation to those issues, both known 
and unknown, that are most salient to the particular context in which studies are being conducted.  For 
postmarket safety surveillance efforts taking place within Sentinel, some important context-specific 
issues that may warrant consideration include: Rare events, rare exposures, confounding of varying 
degree and by a potentially large number of variables, complex relationships between confounding 
variables, covariate dependent censoring times and idiosyncratic prescribing patterns across 
institutions. 

A further consideration when conducting research in a distributed data network is the need to maintain 
the privacy of patient-level data and to conduct research in such a way that sharing of data, which may 
be considered proprietary, is minimized. Franklin et al (2014)(42) presented plasmode simulation with 
patient-level data from empirical cohort studies as an effective way to mimic the complexity of the 
observed data for simulation evaluations. However, when privacy or proprietary concerns preclude 
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sharing subject-level data, plasmode simulation may not be feasible. In this paper we propose 
techniques for simulating data that reflect important and unique aspects of the data from an empirical 
surveillance study. Summary information ranging from basic descriptive statistics to model coefficients 
can be estimated through distributed queries to any number of data partner sites and then used to 
simulate realistic data. We will assess performance using an example from five healthcare organizations 
that participate in the FDA Sentinel Initiative. The original evaluation compared the angiotensin-
converting enzyme inhibitors (ACEI) to beta blockers (BB) with respect to the onset of angioedema, a 
potentially life-threatening allergic reaction. 

B. METHODS 

In Section B.1 we introduce and detail the necessary notation. In Section B.2 we describe several 
statistical techniques for using site-specific summary information to simulate realistic subject-level 
confounder, drug exposure, time-to-event and time-to-censoring data. Section B.3 discusses the use of 
bootstrap sampling as a means of comparing data simulated using summary statistics to the underlying 
data source that was used to compute the summary statistics.   

1. Notation 

We assume that subject i (i=1,…,n), has a set of J binary covariates, 𝑩𝑖 = (𝐵𝑖1 ,… , 𝐵𝑖𝐽) and a set of K 

categorical covariates, 𝑪𝑖 = (𝐶𝑖1,… , 𝐶𝑖𝐾). Let 𝐵𝑖𝑗  represent the jth binary covariate (j=1,…,J) with levels 0 

and 1 and 𝐶𝑖𝑘 represent the kth categorical covariate (k=1,…,K) with levels l (l=1,..,𝐿𝑘). We denote the 
probability, or mean, of the jth binary covariate, P(𝐵𝑗 = 1), as 𝑝𝐵𝑗 , and the vector of probabilities 

(marginal proportions) for the 𝐿𝑘  levels of the kth categorical variable as 𝑝𝐶𝑘 . When referring to the 

combined vector of binary and categorical covariates for subject i we use the notation 𝑍𝑖 = (𝐵𝑖 , 𝐶𝑖).  

The binary indicator of exposure is denoted as 𝑋𝑖  for the ith subject and equals 1 if they are exposed and 
0 otherwise. Additionally, we assume that each subject has an exposure time 𝑇𝑖 which is the minimum 
of their event time, 𝑇𝑖

𝐸, and their censoring time, 𝑇𝑖
𝐶. 𝑌𝑖 is the outcome and is coded 1 if an event 

occurred (𝑇𝑖
𝐸≤𝑇𝑖

𝐶  ) and 0 otherwise. For the remainder of the manuscript we assume that the following 
observed data elements are available to inform simulation: X, Z, Y, and T.  

2. Simulating Data Using Summary Information 

The general framework of this approach is to simulate subject level covariates, exposure variables, and 
time-to-event or censoring outcome variables from summary level data. This section will outline a set of 
summary estimates that can be obtained from collected data and used to simulate different types of 
subject-level data. In addition, this section will outline which summary information is needed to emulate 
the simulations that were conducted in this report, and how the summary information can be used to 
generate purely simulated subject-level data that resembles the observed data in predefined ways. The 
material presented here is by no means meant to be exhaustive. Indeed, there are a myriad of 
possibilities for modification and customization within the framework considered. The following list 
provides a brief summary of the methods considered and the statistics collected for each type of data 
that we want to simulate and is followed by sections which provide a brief description of each 
technique. 
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1. Covariates:  
a. Binned Multivariate Normal Distributions: Marginal empirical probabilities for each 

variable level and bivariate correlations between variables.  
b. Chain of regressions: Coefficients from a sequence of regression models predicting each 

covariate in-turn. 
c. Bootstrap: Samples with replacement from the set of observed subject covariate 

vectors. 
2. Exposure given Covariates:  

a. Bernoulli distribution: Probability of exposure dependent on covariates predicted by 
model with coefficients from pre-specified, site-specific propensity score models 
estimated via logistic regression. 

b. Bootstrap: Samples with replacement from the set of observed subject covariate vectors 
including drug exposure. 

3. Time-to-Outcome given exposure and covariates:  
a. Parametric survival regression: Time-to-Event simulated from Weibull distributions 

where parameters are conditional on covariates/exposure and are estimated with site-
specific models. 

b. Bootstrap: Samples with replacement from subject-level covariate, exposure, exposure 
time and outcome vectors. 

4. Time-to-censoring given exposure and covariates:  
a. Parametric survival regression: Time-to-Censoring simulated from Weibull distributions 

where parameters are conditional on covariates/exposure and are estimated with site-
specific models, under three different scenarios: 

i. Censoring not dependent on covariates; 
ii. Censoring not dependent on covariates, but censoring times come from a 

mixture of a discrete distribution and a continuous distribution.  
iii. Censoring depends on covariates and drug exposure. 

b. Bootstrap: Samples with replacement from subject-level covariate, drug exposure, 
exposure time and censoring vectors. 

a. Covariates 

i. Multivariate Normal Thresholding 

Techniques for simulating correlated binary and ordinal categorical variables using multivariate normal 
thresholding, referred to as the “mean mapping method” , have been described previously in working 
papers by Leisch, Weingessel and Hornik(23) and Kaiser, Träger and Leisch(35), respectively. The authors 
also developed two R packages, bindata and orddata, that include routines for generating correlated 
binary and categorical variables.  These packages include multiple methods for simulating data, 
including multivariate normal thresholding as one option.  

The examples presented in this report make use exclusively of bindata and orddata but there are also 
several other publications and R packages implementing simulation of correlated binary, ordinal, normal 
continuous, and non-normal continuous random variables, as well as combinations of the 
aforementioned. For SAS, multivariate normal thresholding for simulation of correlated ordinal random 
variables is discussed and implemented in SAS/IML by Wicklin (2003)(37). 
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The following sections provide a brief overview of the selection of methods that were used to generate 
the results presented in this report.  

Binary and Categorical Covariates  

Simulation of binary and categorical variables that reflect the correlation observed in the source data 
can be accomplished by taking random draws from the multivariate normal distribution with a specified 
correlation matrix and then thresholding (binning) each of the simulated normal variables at quantiles 
that correspond to steps in the estimated cumulative distribution function of each binary and/or 
categorical covariate. In this report, the R packages bindata and ordata, both of which implement 
multivariate normal thresholding, were used to generate binary covariates and/or combinations of 
binary and categorical covariates, respectively. Both packages use a similar methodology wherein 
observed data dependencies, or summary statistics, are connected to the multivariate normal 
distribution by creating equivalence between the pairwise correlations of the observed binary and/or 
categorical covariates and the correlation matrix of a bivariate normal distribution. Explicit detail can be 
found in the publications of Kaiser et al,(35) but in brief, the method equates the pairwise joint empirical 
cumulative distribution function estimated from the data, with a standard bivariate normal distribution. 
Kaiser, Träger and Leisch(35) show that 

∑ F𝐶1𝐶2(𝑐1,𝑐2)
1≤ 𝑐1≤ 𝐿1−1
1≤𝑐2≤𝐿2−1 

= 𝜌𝐶1𝐶2√𝜎𝐶1
2 √𝜎𝐶2

2 − 𝜇𝐶1𝜇𝐶2 −𝐿1𝐿2 +𝐿1 ∑ F𝐶2(𝑐2)

𝐿2−1

𝑐2=1

+𝐿2 ∑ F𝐶1(𝑐1)

𝐿1−1

𝑐1=1

 

where F𝐶1𝐶2(𝑐1,𝑐2) = 𝑃(𝐶1 ≤ 𝑐1 ,𝐶2 ≤ 𝑐2) and 𝜌𝐶1𝐶2  is the Spearman correlation between 𝐶1 and 𝐶2. 

The bivariate normal distribution with unknown correlation 𝜌𝑍1𝑍2 is substituted on the left-hand side to 

yield 

∑ Φ𝑍1𝑍2
(𝑞𝐹𝐶1(𝑐1)

,𝑞𝐹𝐶2(𝑐2)
, 𝜌𝑍1𝑍2 )

1≤ 𝑐1≤ 𝐿1−1
1≤𝑐2≤𝐿2−1 

= 𝜌𝐶1𝐶2√𝜎𝐶1
2 √𝜎𝐶2

2 − 𝜇𝐶1𝜇𝐶2 −𝐿1𝐿2 +𝐿1 ∑ 𝐹𝐶2(𝑐2)

𝐿2−1

𝑐2=1

+𝐿2 ∑ 𝐹𝐶1(𝑐1)

𝐿1−1

𝑐1=1

 

where 𝐹𝐶𝑖(𝑐) is the estimated marginal cumulative distribution function of an integer-valued discrete 

random variable 𝐶𝑖. The marginal cumulative distribution function is defined here as 𝐹𝐶𝑖 (𝑐) =
∑ 𝑃(𝐶𝑖 = 𝑘)𝑘≤𝑐 . The values 𝑞𝐹𝐶𝑖(𝑐)

 for 𝑐 𝜖 {1,… , 𝐿𝑖} are the quantiles of a standard normal distribution 

that correspond to the 𝐹𝐶𝑖(𝑐)
th percentiles of the observed variables. 𝐿1 and 𝐿2  are the number of levels 

of 𝐶1 and 𝐶2. (𝜇𝐶1,  𝜇𝐶2) , (𝜎𝐶1
2 ,𝜎𝐶2

2 ), and 𝜌𝐶1𝐶2  are the means, variances, and Pearson correlation of 𝐶1 

and 𝐶2, computed as if the variables were continuous.  

To estimate the multivariate normal correlation parameter 𝜌𝑍1𝑍2  in equation above, the mean and 

variance for each variable is computed as 𝜇̂𝐶𝑖 = ∑ 𝑘 𝑃̂(𝐶𝑖 = 𝑘)
𝐿𝑖
𝑘=1  and 𝜎̂𝐶𝑖

2 = ∑ (𝑘 − 𝜇𝑐𝑖)
2 𝑃̂(𝐶𝑖 = 𝑘)𝐿𝑖

𝑘=1 . 

The correlation 𝜌𝐶𝑖𝐶𝑗 , where 𝑖 ≠ 𝑗  is estimated either by the correlation matrix computed in the 

observed data, or assembled from the observed marginal and pairwise common probabilities: 

𝜌̂𝐶1𝐶2 = [∑ ∑ 𝑐𝑖𝑐𝑗 𝑃̂(𝐶1 = 𝑐𝑖 , 𝐶2 = 𝑐𝑗)−∑ 𝑐𝑖 𝑃̂(𝐶1 = 𝑐𝑖)
𝑐𝑖

∑ 𝑐𝑗𝑃̂(𝐶2 = 𝑐𝑗)
𝑐𝑗𝑐𝑗𝑐𝑖

] 
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where 𝑐𝑖 ,𝑐𝑗 ∈ {1,…, 𝐿1}× {1,… , 𝐿2}. The estimated bivariate standard normal correlation 𝜌𝑍1𝑍2  can be 

obtained via a root finding algorithm, or, as is done in the R package orddata, the function can be 
evaluated on a grid of points, and the value of 𝜌𝑍1𝑍2  estimated via interpolation. As previously stated, 

once an estimate of 𝜌𝑍1𝑍2  is obtained, it is generally straight-forward to simulate data from the bivariate 

standard normal distribution with correlation 𝜌𝑍1𝑍2   and categorize the simulated variables at the 

corresponding set of quantiles {𝑞𝐹𝐶𝑖(𝑐)
: 𝑐 𝜖 {1,… , 𝐿𝑖}}. 

To simulate multiple variables from multiple data partner sites, an analyst prepares a program to 
calculate the above univariate and bivariate summary statistics and deploys the program independently 
at each data partner. Once all of the individual and pairwise summary statistics have been computed, 
returned and reviewed, the pairwise correlation estimates are combined into a single correlation matrix, 

Σ𝑠𝑖𝑚, and used to simulate K variables, 𝑧𝑖, where i=1,…,K,  from the multivariate standard normal 

distribution. Each  𝑧𝑖 is then binned in the following way to form the categorical variable  𝑐𝑖
𝑠𝑖𝑚. 

 

𝑐𝑖
𝑠𝑖𝑚 =  

{
  
 

  
 

1        𝑖𝑓 𝑧𝑖𝜖[0,𝑞𝐹𝐶𝑖(1)
)

          2         𝑖𝑓 𝑧𝑖𝜖[𝑞𝐹𝐶𝑖(1)
, 𝑞𝐹𝐶𝑖(2)

)
.
.
.

               𝐿𝑖     𝑖𝑓 𝑧𝑖𝜖[𝑞𝐹𝐶𝑖(𝐿𝑖−1)
, 𝑞𝐹𝐶𝑖(𝐿𝑖)

]

 

ii. Chains of Regressions  

Chains of regressions can be used to capture information about both marginal and conditional 
distributions of binary and categorical covariates, and are simple to fit using most available statistical 
software packages. In the section below, we describe a simple algorithm we implemented for fitting a 
sequence of logistic regressions for predicting all binary covariates, and a sequence of multinomial 
logistic regressions for predicting categorical covariates. The sequence of regression models captures 
multivariate conditional relationships between binary and categorical covariates. The parameters 
summarizing models fit to the original subject level data can in turn be used to simulate subject level 
data from either the binomial or multinomial distributions. 

Binary Covariates 

 The equations below show a simple chain of logistic regressions using a set of binary covariates. The 
regressions can be fit in any order and we suggest starting with the simpler models with fewer 
covariates then ordering the covariates, 𝑩  in ascending order by their estimated marginal means 
(equivalent to the proportion). This ordering will yield better results in cases where some of the binary 
covariates have means that are close to zero. Letting 𝛼𝑚𝑛  represent each of the parameters in models 
with the nth variable as the outcome, where m=0,…,J-1 and n=1,…,J, the regression chain would go as 
follows: 
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𝑙𝑜𝑔𝑖𝑡(𝐵𝑖1) = 𝛼01 
𝑙𝑜𝑔𝑖𝑡(𝐵𝑖2) = 𝛼02 + 𝛼12𝐵𝑖1 
𝑙𝑜𝑔𝑖𝑡(𝐵𝑖3) = 𝛼03 + 𝛼13𝐵𝑖1+𝛼23𝐵𝑖2 

 
. 
. 
. 

𝑙𝑜𝑔𝑖𝑡(𝐵𝑖𝐽) = 𝛼0𝐽 + ∑ 𝛼𝑚𝐽𝐵𝑖𝑚

𝐽−1

𝑚=1

 

In a setting where multiple data partners are contributing data, estimates of all the 𝜶𝒎𝒏   are saved and 
returned from each data partner. As described below, an analyst can then use these estimates to 
simulate (subject level) binary covariates with similar characteristics.  

Categorical Covariates 

For categorical covariates with more than two levels, we need information about the marginal 
distribution of each covariate and the pairwise associations between covariates. For a set of K 
categorical variables 𝐶𝑘  (𝑘 = 1,… ,𝐾) with 𝐿𝑘  levels in indexed by  𝑙, where 𝑙 = 1,…, 𝐿𝑘, the marginal 
distribution is determined by the marginal probabilities 𝑃(𝐶𝑘 = 𝑙). A simple way to quantify the 
dependence of 𝐶𝑘 on other covariates is to fit a multinomial logistic regression (note the multinom 
function in the nnet package in R was applied in the simulation) to 𝐶𝑘 conditional on all other covariates. 
To operationalize this, we fit multinomial logistic regressions to each categorical variable in a chained 
fashion as we cycle through the 𝐾 categorical covariates. If present, binary covariates are included as 
predictors in each model, and categorical covariates used as outcomes are successively added as 
predictors in each subsequent model. When fitting multinomial logistic regressions we obtain an 
estimated linear predictor for each level of the categorical outcome variable. As an example, for two 
categorical variables 𝐶1 and 𝐶2 with levels 𝐿1 = 4 and 𝐿2 = 5, respectively, and allowing the first level 
to be the reference category, we would fit a chain of two multinomial logistic regressions as follows. 
Letting 𝐶𝑖𝑘 represent the ith subject’s value for the kth covariate when have 

 

𝑚𝑙𝑜𝑔𝑖𝑡(𝐶𝑖1 |𝐵𝑖1 ,… , 𝐵𝑖𝐽) = 

{
 
 
 
 

 
 
 
 
𝑙𝑒𝑣𝑒𝑙 2 𝛾01

2 +∑𝛽𝑗1
2 𝐵𝑖𝑗

𝐽

𝑗=1

𝑙𝑒𝑣𝑒𝑙 3 𝛾01
3 +∑𝛽𝑗1

3 𝐵𝑖𝑗

𝐽

𝑗=1

𝑙𝑒𝑣𝑒𝑙 4 𝛾01
4 +∑𝛽𝑗1

4 𝐵𝑖𝑗

𝐽𝐵

𝑗=1

 

and 
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𝑚𝑙𝑜𝑔𝑖𝑡(𝐶𝑖2|𝐶𝑖1,𝐵𝑖1 ,… , 𝐵𝑖𝐽) = 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑙𝑒𝑣𝑒𝑙 2 𝛾02

2 +𝜸12
2 𝐶𝑖1

𝑙 +∑𝛽𝑗2
2 𝐵𝑖𝑗

𝐽

𝑗=1

𝑙𝑒𝑣𝑒𝑙 3 𝛾02
3 +𝜸12

3 𝑪𝑖1
𝑙 +∑𝛽𝑗2

3 𝐵𝑖𝑗

𝐽

𝑗=1

𝑙𝑒𝑣𝑒𝑙 4 𝛾02
4 +𝜸12

4 𝑪𝑖1
𝑙 +∑𝛽𝑗2

4 𝐵𝑖𝑗

𝐽

𝑗=1

𝑙𝑒𝑣𝑒𝑙 5 𝛾02
5 +𝜸12

5 𝑪𝑖1
𝑙 +∑𝛽𝑗2

5 𝐵𝑖𝑗

𝐽

𝑗=1

 

 

where 𝑪𝑖1
𝑙  is (𝐿1-1)x1 vector of indicator variables representing 𝐶𝑖1 equal to level 𝑙, where 𝑙 = 1,…, 𝐿𝑘. 

𝛾0𝑘
𝑙  is the intercept and 𝛽𝑗𝑘

𝑙  is the coefficient for binary confounder j for the  𝑙 th level of the multinomial 

model for the kth categorical confounder. For the second model we further specify that 𝜸12
𝑙  is a 1x(𝐿1-1) 

vector of coefficients relating the first categorical variable in the chain to 𝐶𝑖2 . The model coefficients are 
returned to be used in data simulation. 

Note that a similar approach could be used to generate summary information for continuous covariates. 
However, since in the current application we have no need to include continuous covariates we will not 
cover the topic here. 

After estimates for all α and β coefficients have been estimated and returned, an analyst can simulate a 
set of correlated binary and categorical covariates of any sample size by looping through all of the 
variables in the same order that the parameter estimates were generated and simulating subject -level 
values as follows:  

𝐵𝑖1
𝑠𝑖𝑚~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑃(𝐵𝑖1)) 

𝐵𝑖2
𝑠𝑖𝑚~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑃(𝐵𝑖2|𝐵𝑖1)) 

 
. 
. 
. 
 

𝐵𝑖𝐽
𝑠𝑖𝑚~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑃(𝐵𝑖𝐽|𝐵𝑖1 ,… , 𝐵𝑖𝐽−1)) 

𝐶𝑖1
𝑠𝑖𝑚~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1,𝑃(𝐶𝑖1|𝐵𝑖1,… , 𝐵𝑖𝐽−1)) 

𝐶𝑖2
𝑠𝑖𝑚~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1,𝑷(𝐶𝑖2|𝐶𝑖1 ,𝐵𝑖1 ,… , 𝐵𝑖𝐽−1)) 

 
. 
. 
. 
 

𝐶𝑖𝐾
𝑠𝑖𝑚~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1,𝑷(𝐶𝑖𝐾|𝐶𝑖1, … , 𝐶𝑖𝐾−1 ,𝐵𝑖1 , … , 𝐵𝑖𝐽−1)) 
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b. Exposure and Propensity Score Model 

To compute summary statistics which will allow simulation of a dichotomous exposure that depends on 
measured variables, we fit a propensity score model, i.e., the probability of exposure given confounders, 
using logistic regression with the exposure variable as the outcome regressed on a function of the binary 
and categorical covariates. This model can be as flexible as required – perhaps including higher order 
terms for single covariates, interactions between covariates, splines, etc. – and would typically include 
only terms that are thought to be related either to both the outcome and the exposure, though 
variables related only to the outcome can also be useful.  The propensity score model takes the form 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑋𝑖 |𝒁𝑖)) = 𝜽
′𝒇(𝒁𝑖), 

where 𝒁𝑖 is a vector of covariates for subject i, 𝜽 is a vector of coefficients and 𝒇(𝒁𝑖) is a vector-valued 
function of the observed covariates which may include interactions, polynomial functions and/or 
regressions splines. The coefficients are retained and can be used by an analyst to compute the 
probability of receiving treatment based on covariates. Once estimates of 𝜽 are returned from all data 

partners subject-level exposure values, 𝑋𝑖
𝑠𝑖𝑚, can be generated as  

𝑋𝑖
𝑠𝑖𝑚~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑃(𝑋𝑖 |𝑍𝑖)) 

c. Time-To-Event 

A basic summary of event and censoring times observed in the source data can be obtained by fitting 
flexible parametric survival regressions for time-to-event and time-to-censoring. Here we briefly provide 
the basic details of time-to-event data and connect them to the Weibull form of the parametric survival 
model.  The presentation is intended to give insight into the techniques that were used in this report 
and to serve as a brief reference for an analyst who intends to conduct similar simulations.  
The Weibull distribution for survival times, t, is defined by scale parameter λ and shape parameter γ and 

has probability density function 𝑓(𝑡) = 𝜆𝛾𝛾𝑡𝛾−1𝑒−𝜆𝑡
𝛾

. The survival function can be defined in terms of 

the density function as 

𝑆(𝑡) = 1− ∫ 𝑓(𝑢)𝑑𝑢
𝑡

0
= 𝑒−𝜆

𝛾𝑡
𝛾

. 

The hazard function is related to the survival function in the following way 

ℎ(𝑡) =
𝑑

𝑑𝑡
log (𝑆(𝑡)) 

=
𝑓(𝑡)

𝑆(𝑡)
 

= 𝜆𝛾𝛾𝑡
𝛾−1

. 

The cumulative hazard function can be written in terms of the hazard function or the survival function 

𝐻(𝑡) = ∫ ℎ(𝑢)𝑑𝑢
𝑡

0
, or 

𝐻(𝑡) = − log(𝑆(𝑡)) = 𝜆𝛾𝑡
𝛾

. 

To fit a model to observed survival data assuming a Weibull distribution with scale parameter 𝜆𝑖
𝐸and 

shape parameter 𝛾𝐸, where the superscript E indicates that the model is for the outcome event as 
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opposed to a censoring event (denoted with superscript C below), i.e., the event times, 𝑇𝑖
𝐸, are 

distributed as 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝜆𝑖
𝐸, 𝛾𝐸), and we typically fit the following model of the form 

log(𝑇𝑖
𝐸) = 𝜂0 +𝜂𝑥𝑋𝑖 +𝜼

′𝒁𝑖 +𝜎𝑊𝑖, 

where 𝑊𝑖  follows the extreme value distribution. Parameter estimates for this model can be obtained 
via maximum likelihood using pre-existing functions in most modern statistical packages, including R, 
SAS and Stata. If R or SAS is used for estimation, to estimate the hazard, survival and cumulative hazard 
functions detailed above, we transform the coefficients and scale parameter from the Weibull 

regression model to yield the Weibull scale and shape parameters 𝜆𝑖
𝐸 = 𝑒−(𝜂0+𝜂𝑥𝑋𝑖+𝜼

′𝒁𝑖) and 𝛾𝐸 =
1

𝜎
. In 

this case we have chosen to estimate a constant shape parameter for all subjects, which can be thought 
of as assuming that the distribution of event times across drug exposures and covariate groups has the 

same shape, but that the conditional hazard, 𝜆𝑖
𝐸, varies yielding longer or shorter times depending on 

the observed covariate values. We could also allow 𝜎 to vary by covariate strata, yielding stratum-

specific shape parameters 𝛾𝑖
𝐸 =

1

𝜎𝑖
. 

These parameter estimates can be used to simulate event times either by directly simulating using a pre-
existing function for generating random Weibull variables in existing statistical software, or by 
simulating random values from a uniform distribution on the interval [0,1] and using the probability 
integral transform as outlined in Bender et al (2005)(28). For example, using the methodology discuss in 

Bender et al, we can generate Weibull random variables 𝑇𝑖
𝐸𝑠𝑖𝑚 as 

𝑇𝑖
𝐸𝑠𝑖𝑚 = (−log (𝑈𝑖)𝑒

(𝜂0+𝜂𝑥𝑋𝑖+𝜼
′𝒁𝑖)/𝜎)

𝜎
, 

where 𝑈𝑖 is a random draw from a uniform distribution on the interval [0,1].  The next section describes 
similar models for estimating parameters to define several potential distributions for time-to-censoring, 

𝑇𝑖
𝐶𝑠𝑖𝑚.  Regardless of the censoring distribution used, when the parameters estimates from each data 

partner are returned, an analyst can simulate 𝑇𝑖
𝐸𝑠𝑖𝑚 and 𝑇𝑖

𝐶𝑠𝑖𝑚 and define the “observed” follow-up 

time, 𝑇𝑖
𝑠𝑖𝑚, and event indicator, 𝑌𝑖

𝑠𝑖𝑚, for each simulation as 

𝑇𝑖
𝑠𝑖𝑚 = min (𝑇𝑖

𝐸𝑠𝑖𝑚,𝑇𝑖
𝐶𝑠𝑖𝑚) 

and 

𝑌𝑖
𝑠𝑖𝑚 = {0   𝑖𝑓 𝑇𝑖

𝐸𝑠𝑖𝑚 ≤ 𝑇𝑖
𝐶𝑠𝑖𝑚,

1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.              
 

d. Time-to-Censoring 

We followed a similar methodology for modeling censoring times as was described in the section above. 
We considered three different models for censoring times: i) simple, covariate independent, ii) simple, 
covariate independent allowing for common discrete prescription lengths and iii) covariate adjusted. 

i. Simple Independent Censoring 

For Simple Independent Censoring, we assumed that the censoring times followed a Weibull distribution 
with shape parameter 𝜆𝐶  and scale parameter 𝛾𝐶, both independent of drug exposure and covariates. 
Parameter estimates were obtained via maximum likelihood by fitting the following model for time-to-

censoring, 𝑇𝑖
𝐶, 

log(𝑇𝑖
𝐶) = 𝜈0 + 𝜎

𝐶𝑊𝑖, 
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yielding 𝜆𝐶 = 𝑒−𝜈0/𝜎
𝐶

 and 𝛾𝐶 =
1

𝜎𝐶
 .  

ii. Simple and Discrete Independent Censoring 

In some cases, there may be additional features of the observed censoring distribution that we wish to 
mimic in our simulations. For example, there may be a high frequency of particular censoring times like 
30, 60 or 90 days reflecting common prescription lengths for certain medications. These additional 
features can be modeled as discrete times and combined with the continuous censoring distribution 
based on frequency of occurrence. In this case we can add an additional step to the modeling process 
for censoring times. Instead of fitting the Weibull model to all of the censoring times, we first estimate 
the probability of being censored at particular times, e.g. 30, 60 or 90 days, and then fit the Weibull 
time-to-censoring model to the data excluding these times. When simulating data, prior to generating a 
censoring time, we first take a draw from a multinomial distribution with a bin for each of the unique 
times that were removed and one additional bin that indicates that the time should come from the 
continuous distribution. Given the example mentioned above where 30, 60 and 90-day prescriptions are 
notably more frequent in the context of the overall distribution of censoring times, we would draw a 
random variable 𝑀𝑖 from the multinomial distribution with probability vector 𝜐 given by 

𝜐 = (𝑃(𝑇𝑖
𝐶 = 30 ), 𝑃(𝑇𝑖

𝐶 = 60 ),𝑃(𝑇𝑖
𝐶 = 0 ), 1 − ∑ 𝑃(𝑇𝑖

𝐶 = 𝑡 )

𝑡∈{30,60,90}

)

′

 

If 𝑀𝑖 takes on realizations 𝑚𝑖 ∈ {1, 2, 3, 4} we adhere to the following rule for assigning censoring times: 

𝑇𝑖
𝐶𝑠𝑖𝑚 = {

30, 𝑖𝑓 𝑚𝑖 = 1
60, 𝑖𝑓 𝑚𝑖 = 2
90,

𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝜆∗ ,𝛾∗),
𝑖𝑓 𝑚𝑖 = 3
𝑖𝑓 𝑚𝑖 = 4,

 

where 𝜆∗ and 𝛾∗ are the shape and scale parameters from a time-to-censoring model fit to the data with 
censoring times of 30, 60 and 90 days excluded. 

iii.  Covariate and Exposure Dependent Censoring 

Another approach to flexibly model the censoring time is to allow it to depend on drug exposure and 
covariates. Common survival model analysis techniques, such as Cox’s proportional hazards model, 
assume that the censoring distribution is independent of the event distribution given covariates.  In 
practice censoring distributions are often highly related to exposures and covariates. For example, older 
adults may be more likely to stop taking medication due to other comorbidities.  Another important 
example is when comparing newly marketed drugs to drugs that have been on the market for some time 
(exposure of interest compared to a comparator). The new drugs are often more expensive and may 
initially be prescribed in 30-day intervals while a comparator drug that may be on the market longer 
may initially be prescribed in 90-day intervals. Therefore, censoring is more likely to occur earlier for 
older adults and those on newer drugs. To allow for this complexity we assume a similar Weibull time-
to-censoring model as was detailed above for events:  

log(𝑇𝑖
𝐶) = 𝜈0 + 𝜈𝑥𝑋𝑖 + 𝝂

′𝒁𝑖 +𝜎
𝐶𝑊𝑖 , 

yielding 𝜆𝑖
𝐶 = 𝑒−(𝜈0+𝜈𝑥𝑋𝑖+𝝂

′𝒁𝑖)/𝜎
𝐶

 and 𝛾𝐶 =
1

𝜎𝐶
. Some statistical approaches may be able to account for 

this type of covariate and exposure dependent censoring (e.g. Cox PH regression approaches which 
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adjust for the covariates and exposure in the model directly), however other approaches may or may 
not be able to handle this assumption as well (e.g. approaches which do not directly condition on both 
covariates and exposure in the model as is the case with some propensity score based approaches). 
Therefore, allowing for data to be simulated with this flexibility may be important. In our simulation 
study in Section IV, we will compare these three censoring approaches (simple independent censoring, 
discrete and simple independent censoring, and covariate and exposure dependent censoring) to assess 
performance. Note that other censoring mechanisms such as those that combine discrete censoring and 
covariate and/or exposure dependent censoring are also easily implemented in our current simulation 
framework. For simplicity, we only present the three general approaches since they cover the most 
common scenarios typically observed in our data setting. Ultimately, we did not observe large 
differences between censoring approaches adding more nuanced methods.    

e. Simulate Site Data Given Summary Statistics 

Given the summary information from each site, the process of data simulation for a given site follows a 
similar sequence to that used to collect summary statistics.  Specifically if you simulate covariates using 
the multivariate normal thresholding approach you first begin with the matrix of common probabilities 
or correlation matrix and means as outlined in Section II.B.2.a.i from your dataset. Given this data you 
calculate the normal distribution 𝜌𝑍1𝑍2  and quantile cut-offs {𝑞𝐹𝐶(𝑐): 𝑐 𝜖 {1,… , 𝐿}}. Then simulate 

continuous covariates from a multivariate normal distributed with correlation 𝜌𝑍1𝑍2  and use the quantile 

cut-offs to derive the simulated binary and categorical covariates.   

After simulating binary and categorical covariates, the site-specific propensity score model is used to 
simulate exposure, 𝑋𝑖 , which is generated from a Bernoulli distribution with probability 𝑃(𝑋𝑖) =

(1+ 𝑒−𝜃
′𝑍𝑖 )−1. After simulating the binary, categorical and exposure variables, we can then simulate 

corresponding event and censoring times using the parameters from the parametric survival models 
that were fit at each site. For each subject record, we simulate both an event and a censoring time. 

Given these two times we take the minimum, i.e., 𝑇𝑖
𝑠𝑖𝑚 = min (𝑇𝑖

𝐸𝑠𝑖𝑚,𝑇𝑖
𝐶𝑠𝑖𝑚). If 𝑇𝑖

𝐸𝑠𝑖𝑚 ≤ 𝑇𝑖
𝐶𝑠𝑖𝑚 then 

the event indicator, 𝑌𝑖, equals 1, and otherwise 𝑌𝑖 = 0. In Section II.C.1 we will detail the summary 
information and simulation process for a specific data example. 

When actually conducting a simulation evaluation one would like not only to mimic actual data, but a lso 
change certain parameters of interest such as the strength of the relationship between the exposure of 
interest and outcome. This would typically be done by maintaining observed associations between 
covariates and outcome in the dataset and simply changing  𝜂𝑥  to the desired log(Hazard Ratio) 
comparing exposed to unexposed. Since data is simulated within site, if the interest is in assessing 
performance of methods when site heterogeneity exists, then  𝜂𝑥  must be different for each site, i.e., an 
interaction between treatment and site must be created.  

Given the summary information the researcher has the ability to change any parameter of interest to 
explore a large range of questions easily (e.g. 1: methods performance for varying confounding 
relationships (change the propensity model coefficients or covariate outcome coefficients), 2: methods 
performance when creating site heterogeneity (differentially changing the relationship between 
exposure and confounder across sites), or 3: methods performance when missing confounders in the 
model dependent on confounder prevalence (miss-specify the model dropping different confounders 
from the method to see if it makes a difference)). Therefore, this new approach allows one to mimic 
realistic data situations, but does not constrain the types of questions to be asked.   
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3. Bootstrap as Gold Standard 

Since the purpose of this exercise is to be able to simulate data that mirrors real data, one way to 
evaluate the effectiveness of the proposed simulation methods is to compare them to the empirical 
distribution of the data that we are attempting to mimic. We can accomplish this by using bootstrap 
sampling from the subject level data as a kind of gold standard. Comparisons can take place on a 
number of dimensions but will focus on marginal and pairwise correlations.  

C. ASSESSMENT OF DIFFERENT DATA SIMULATION APPROACHES 

In this simulation assessment, we compare data generated using bootstrap sampling of subject-level 
covariates, drug exposures, follow-up times and indications of angioedema to our proposed approach of 
using summary information only. In what follows we detail the test data used and the summary statistics 
related to each type of data and compare the results of analyses performed on simulated data with 
those obtained from analyzing parallel bootstrap samples. 

1. Example Data 

Data for this example was taken from a cohort study conducted within Sentinel to evaluate the relative 
risk of angioedema between users of ACE-inhibitors (ACEI) and a select group of beta-blocker (BB) users.  

Table 1. Sample characteristics by site (n=150,000) 

Variable Site 1 Site 2 Site 3 Site 4 Site 5 
Sample Size 48127 19275 33399 45012 4187 

Age 
 30-44 (Ref) 28.1 22.3 9.5 22 25.4 

 45-54 28.5 24.3 11.8 24.3 30 
 55-64 26.7 24.9 15.5 25.8 31.8 
 ≥65 16.7 28.4 63.2 27.9 12.8 

Sex 
 Male (Ref) 50.8 48.8 48.6 51.1 51 

 Female 49.2 51.2 51.4 48.9 49 
Comorbidity Score 

     

 ≤ 0 (Ref) 78.9 77.5 63.9 75.7 77.2 

 1 21.1 22.5 36.1 24.3 22.8 
Emergency Visits 

 0 (Ref) 80.7 80.9 84.4 87.1 78.8 
 ≥ 1 19.3 19.1 15.6 12.9 21.2 
Hospital Stays 

 0 (Ref) 89.9 90.3 84 85.6 89.3 
 ≥ 1 10.1 9.7 16 14.4 10.7 

Year 
 2008 13.2 26.5 21.5 23.5 21.5 
 2009 27 22.7 21.2 21.8 22.2 

 2010 23.1 19.3 19.4 19.5 19.2 
 2011 19 16.3 18.8 18.4 19.2 

 2012 17.8 15.2 19.2 16.8 17.8 
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Approximately 2.5 million records were available from the original inquiry, representing five data 
partners – referred to in what follows as sites 1-5. In all, the data included information on 1.4 million 
ACEI users (56%) and 1.1 million BB users. The proportional data contributions of each of the five sites 
was 32%, 13%, 23%, 30%, and 2.5% of the total sample, respectively.  To ensure that meaningful results 
could be generated within a reasonable time frame, we reduced the computational burden by taking a 
simple random sample of 6% of the 2.5 million records, or 150,000 subjects, as a test cohort. This 
randomly sampled cohort included subject-level covariate values, drug exposures, follow up times and 
indications of angioedema or censoring. The sample comprises 84,351 ACE-inhibitor users and 65,649 
beta-blocker users and includes three binary covariates (sex; number of emergency visits (EVs) in the 
last 180 days: 0, 1+; and number of inpatient hospital stays (HSs) in the last 180 days: 0, 1+) and three 
categorical covariates (Age: 18-44, 45-54, 55-64, 65-99; Comorbidity Index: ≤ 1, >1; and Year: 2008, 
2009, 2010, 2011, 2012). Summaries of covariate distributions by site are presented in Table 1. 

In addition to site, Table 2 further stratifies the sample by drug exposure and contains sample sizes, 
counts of angioedema events, rates of angioedema per thousand person-years and average follow-up 
days.  

Table 2. Sample size, average* person-days of follow-up, number of events and event rates per 1000 
person-years by site and drug exposure (n=150,000) 

Site Drug N  Average Person Time Events Rates 

SITE 1 BB 21080  106.9 11 1.78 
 ACEI 27047  128.1 51 5.38 

SITE 2 BB 8435  151.7 4 1.14 
 ACEI 10840  180.5 22 4.11 

SITE 3 BB 13881  130.7 6 1.21 
 ACEI 19518  154.2 35 4.25 

SITE 4 BB 20358  118.6 11 1.66 
 ACEI 24654  144.5 40 4.10 

SITE 5 BB 1895  116 0 0.00 
 ACEI 2292  147.5 6 6.48 

*Average is sum of person-time across all subjects divided by number of subjects N 

Overall, there were 186 angioedema events in the test sample with unadjusted rates of 4.6 per 1,000 
and 1.5 per 1,000 person-years among ACEI users and BB users, respectively. Variation in the rate of 
angioedema across data partner sites was small, with the exception of site 5 where only six events in 
total were sampled, all of which were in the ACE-inhibitor group. 

As described in Section II.B above, we cover two different ways of simulating correlated binary and 
categorical covariates: multivariate normal thresholding and regression chains.  For multivariate normal 
thresholding, we need estimates of the common probabilities. For chain regressions, we need 
coefficients from sequential chains of logistic and multinomial regressions. The site-specific marginal 
probability estimates from Table 1 can be used to estimate the means and the correlation can either be 
computed directly by treating the variables as continuous data, or calculated using common 
probabilities. As an example, Table 3 shows the site-averaged matrix of common probabilities (reference 
level excluded for space). The pairwise Pearson correlation matrices of the covariates at each site are 
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shown in Appendix Table B 1. The computed model coefficients for chain of regressions are shown in 
Table B 2 and Table B 3. 

To generate drug exposure data, we use propensity score models fit separately at each data partner site 
to predict the probability of exposure given simulated covariates, generating an exposure 

𝑋𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 ((1+ 𝑒
−𝑍𝑖𝜃𝑠 )

−1
) for each subject. In this example, we estimated a propensity score 

model for exposure to ACEIs versus BBs with the same functional form at each of the five sites. There 
are a variety of ways to increase the complexity of the propensity score models if needed, including 
fitting different models at each data partner, specifying higher order terms or interactions, or using data 
driven model-selection algorithms. Odds ratios, standard errors, and c-statistics from the site-specific 
propensity score models are displayed in Table 4.  

Table 3. Observed probabilities* over data partner sites (n=150,000; reference levels excluded) * 
 

1+ HS 1+ EV 1+ CS SexF 45-54 55-64 65+ 2009 2010 2011 2012 
1+ HS 12.7 5.4 8.6 6.5 2.0 2.5 6.1 2.9 2.5 2.3 2.3 
1+ EV 5.4 16.6 7.6 8.7 3.6 3.5 5.4 3.8 3.4 3.1 3.1 
1+ CS 8.6 7.6 25.6 13.3 4.0 5.2 12.6 5.8 5.2 4.8 4.8 
SexF 6.5 8.7 13.3 49.9 11.0 11.5 16.7 11.6 10.3 9.3 8.6 
45-54 2.0 3.6 4.0 11.0 23.0 0.0 0.0 5.7 4.9 4.1 3.7 
55-64 2.5 3.5 5.2 11.5 0.0 23.9 0.0 5.8 5.0 4.3 4.1 
65+ 6.1 5.4 12.6 16.7 0.0 0.0 31.8 6.8 6.3 6.1 6.0 
2009 2.9 3.8 5.8 11.6 5.7 5.8 6.8 23.4 0.0 0.0 0.0 
2010 2.5 3.4 5.2 10.3 4.9 5.0 6.3 0.0 20.6 0.0 0.0 
2011 2.3 3.1 4.8 9.3 4.1 4.3 6.1 0.0 0.0 18.4 0.0 
2012 2.3 3.1 4.8 8.6 3.7 4.1 6.0 0.0 0.0 0.0 17.5 

*Probabilities in diagonal cells are frequency of variables (%). Probability in each off diagonal cell is the frequency 
(%) of co-occurrence of the corresponding row and column binary variables. 

Table 4. Observed odds ratios from site-specific propensity score models 

  Site 1 Site 2 Site 3 Site 4 Site 5 
  OR SE OR SE OR SE OR SE OR SE 
Intercept 1.39 0.044 1.46 0.063 1.46 0.064 1.39 0.041 1.24 0.12 
Age 
45-54 1.64 0.041 1.88 0.083 1.6 0.079 1.58 0.045 1.95 0.171 
55-64 1.67 0.043 1.68 0.073 1.56 0.073 1.53 0.043 1.94 0.168 
65+ 1.28 0.038 1.31 0.056 1.29 0.051 1.26 0.036 1.76 0.198 
1+ CS 0.53 0.013 0.56 0.022 0.65 0.017 0.54 0.014 0.54 0.045 
1+ EV 0.8 0.021 0.74 0.032 0.8 0.025 0.84 0.025 0.67 0.059 
1+ HS 0.54 0.02 0.52 0.031 0.5 0.016 0.51 0.016 0.5 0.064 
SexF 0.61 0.012 0.64 0.019 0.83 0.019 0.64 0.013 0.56 0.037 
Year 
2009 1.16 0.037 1.04 0.045 1.14 0.04 1.08 0.031 1.11 0.109 
2010 1.14 0.037 1.03 0.047 1.12 0.04 1.13 0.034 1.14 0.116 
2011 1.09 0.037 0.96 0.045 1.06 0.038 1.12 0.034 1.13 0.116 
2012 1.02 0.035 0.93 0.045 1.11 0.04 1.03 0.032 1.05 0.109 
C-stat 0.64 0.64 0.61 0.64 0.66 
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For time-to-event we utilize parametric survival models assuming an underlying Weibull distribution (discussed in Section II.B). The Weibull 
distribution is extremely flexible and can accommodate a wide variety of data. As with propensity score estimation there are a variety of choices 
that can be made when specifying models for the time-to-event outcomes. For simplicity, we have chosen to again fit models with the same 
functional form separately at each data partner. Hazard ratios, standard errors, and 95% confidence intervals from these models are tabulated in 
Table 5. For comparison with the more commonly used semi-parametric framework for analyzing survival data, Table 6 displays results from 
fitting the standard Cox proportional hazards model to the time-to-angioedema data at each data partner. 

Table 5. Observed Weibull hazard ratios, standard errors and 95% confidence interval estimates for time-to-angioedema by data partner 
(n=150,000) 

  Site 1 Site 2 Site 3  Site 4 Site 5 
  HR SE 95% CI HR SE 95% CI HR SE 95% CI HR SE 95% CI HR SE 95% CI 
ACEI 3.3 1.1 (1.7, 6.6) 3.8 2.2 (1.2, 11.5) 3.8 1.7 (1.6, 9.3) 3.5 1.3 (1.7, 7.1) Inf Inf Inf Inf 
45-54 1.7 0.7 (0.8, 3.6) 0.4 0.2 (0.1, 1.2) 0.6 0.5 (0.1, 3.2) 0.7 0.3 (0.3, 1.6) 0.7 1.0 (0.0, 11.6) 
55-64 1.6 0.6 (0.7, 3.4) 0.8 0.4 (0.3, 2.1) 0.8 0.6 (0.2, 3.3) 0.6 0.3 (0.3, 1.4) 1.6 1.9 (0.2, 16.0) 
65+ 1.1 0.5 (0.4, 2.7) 0.4 0.3 (0.1, 1.4) 1.1 0.7 (0.3, 3.8) 0.6 0.3 (0.3, 1.4) 0.9 1.4 (0.1, 16.0) 
1+ CS 1.9 0.6 (1.0, 3.4) 1.3 0.7 (0.5, 3.7) 1.5 0.5 (0.8, 3.0) 1.4 0.5 (0.7, 2.7) 10.2 9.5 (1.7, 62.5) 
1+ EV 1.2 0.4 (0.6, 2.5) 1.6 0.9 (0.6, 4.5) 1.4 0.6 (0.6, 3.1) 1.4 0.5 (0.7, 2.9) 2.3 2.4 (0.3, 18.8) 
1+ HS 0.4 0.3 (0.1, 1.6) 0.4 0.5 (0.0, 3.6) 0.6 0.3 (0.2, 1.8) 2.2 0.8 (1.0, 4.5) 0.7 1.0 (0.0, 11.2) 
SexF 1.5 0.4 (0.9, 2.5) 0.7 0.3 (0.3, 1.6) 0.7 0.2 (0.4, 1.3) 2.0 0.6 (1.1, 3.5) 0.7 0.6 (0.1, 3.9) 
2009 2.3 1.2 (0.8, 6.7) 0.5 0.3 (0.2, 1.7) 1.2 0.6 (0.4, 3.2) 1.6 0.8 (0.6, 4.2) Inf Inf Inf Inf 
2010 1.6 0.9 (0.5, 4.9) 1.1 0.5 (0.4, 2.8) 0.7 0.4 (0.2, 2.3) 2.1 1.0 (0.8, 5.3) Inf Inf Inf Inf 
2011 1.9 1.1 (0.6, 5.9) 0.4 0.3 (0.1, 1.7) 1.7 0.8 (0.7, 4.4) 1.7 0.9 (0.7, 4.6) 0.0 0.0 (0.0, 0.0) 
2012 3.0 1.7 (1.0, 9.0) 0.8 0.5 (0.2, 2.6) 1.1 0.6 (0.4, 3.1) 2.0 1.0 (0.7, 5.2) 88.3 Inf Inf Inf 
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Table 6. Observed Cox PH hazard ratios, standard errors and 95% confidence interval estimates for time-to-angioedema by data partner 

  Site 1 Site 2 Site 3  Site 4 Site 5 

  HR SE 95% CI HR SE 95% CI HR SE 95% CI HR SE 95% CI HR SE 95% CI 
ACEI 3.4 1.2 (1.7, 6.6) 3.8 2.1 (1.3, 11.4) 3.8 1.7 (1.6, 9.2) 3.5 1.2 (1.8, 7.0) Inf Inf (0.0, Inf 
45-54 1.7 0.7 (0.8, 3.6) 0.4 0.2 (0.1, 1.2) 0.6 0.5 (0.1, 3.2) 0.8 0.3 (0.3, 1.7) 0.8 1.1 (0.0, 12.6) 

55-64 1.6 0.6 (0.8, 3.5) 0.8 0.4 (0.3, 2.2) 0.8 0.6 (0.2, 3.3) 0.7 0.3 (0.3, 1.5) 1.7 2.0 (0.2, 17.3) 
65+ 1.1 0.5 (0.4, 2.7) 0.5 0.3 (0.1, 1.4) 1.1 0.7 (0.3, 3.8) 0.7 0.3 (0.3, 1.4) 1.1 1.7 (0.1, 19.6) 

1+ CS 1.9 0.6 (1.0, 3.4) 1.3 0.7 (0.5, 3.7) 1.5 0.5 (0.8, 3.0) 1.4 0.5 (0.7, 2.7) 9.0 8.2 (1.5, 53.3) 
1+ EV 1.2 0.4 (0.6, 2.5) 1.6 0.8 (0.6, 4.5) 1.4 0.6 (0.6, 3.1) 1.4 0.5 (0.7, 2.9) 2.3 2.4 (0.3, 18.3) 
1+ HS 0.4 0.3 (0.1, 1.5) 0.4 0.5 (0.0, 3.6) 0.6 0.3 (0.2, 1.8) 2.1 0.8 (1.0, 4.4) 0.8 1.1 (0.1, 11.8) 

SexF 1.5 0.4 (0.9, 2.5) 0.7 0.3 (0.3, 1.6) 0.7 0.2 (0.4, 1.3) 2.0 0.6 (1.1, 3.5) 0.7 0.6 (0.1, 4.0) 
2009 2.3 1.2 (0.8, 6.7) 0.5 0.3 (0.2, 1.7) 1.2 0.6 (0.4, 3.2) 1.6 0.8 (0.6, 4.2) Inf Inf (0.0, Inf 

2010 1.6 0.9 (0.5, 4.9) 1.1 0.5 (0.4, 2.8) 0.7 0.4 (0.2, 2.3) 2.1 1.0 (0.8, 5.3) Inf Inf (0.0, Inf 
2011 1.9 1.1 (0.6, 5.9) 0.4 0.3 (0.1, 1.7) 1.7 0.8 (0.7, 4.4) 1.7 0.9 (0.7, 4.6) 0.9 Inf (0.0, Inf 

2012 3.0 1.7 (1.0, 9.0) 0.8 0.5 (0.2, 2.6) 1.1 0.6 (0.4, 3.1) 2.0 1.0 (0.7, 5.1) 1.0 Inf (0.0, Inf 
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With respect to the censoring distribution in the sample data, we explore three different formulations. 
In the first, and most basic scenario we assume that each subject’s censoring time follows the exact 
same distribution regardless of their covariate values or exposure status (Simple Independent 
Censoring). Our summary information for this case comes from site-specific Weibull survival models 
with censoring as the outcome and only an intercept and a scale parameter specified. The results from 
fitting these models at each site are shown in Table 7. The second censoring model also assumes simple 
censoring but allows simulated data to reflect a small number of extremely common prescription times, 
e.g. 30 or 90 days (Discrete and Simple Independent Censoring). In this case, we specified that the three 
most common exposure times, or modes of the treatment period distribution, were 44, 104 and 365 
days. These times correspond to prescriptions of 30 and 90 days with a 14-day post-exposure allowance 
and the administrative censoring time of 365 days (Table 8). As described in the methods section we 
then implemented a two-step sampling scheme, where for each subject a draw is first taken from a 
multinomial distribution with the result indicating that the censoring time should either be one of the 
three most common times or should be sampled from the simple independent censoring model. 
Parameters from fitting the discrete and simple independent censoring model to data where the three 
most common episode lengths are removed is shown in Table 9. The third censoring model allows 
censoring to depend on the same set of covariates and exposures (Covariate and Exposure Dependent 
Censoring). Results from the site-specific, covariate and exposure adjusted Weibull time-to-censoring 
models are shown in Table 10. 

Table 7. Observed intercept and scale term from site-specific simple independent censoring models 
(site-specific Weilbull time-to-censoring model) 

 Site 1 Site 2 Site 3 Site 4 Site 5 
Intercept 4.83 5.22 5.03 4.94 4.95 

Scale 0.88 0.68 0.85 0.87 0.87 

Table 8. Three most common observed follow up times in days and corresponding proportion of all 

censoring times by data partner 

Site 1 Site 2 Site 3 Site 4 Site 5 

Days % Days % Days % Days % Days % 
44 33.6 44 5.7 44 25.1 44 30.4 44 29.7 

104 5.8 114 37.5 104 9.5 104 5.9 104 4.8 
365 10.7 365 18.6 365 16.6 365 14.3 365 14.3 

Table 9. Observed intercept and scale term from site-specific simple and discrete censoring model* 
with common times removed 

  Site 1 Site 2 Site 3 Site 4 Site 5 

Intercept 4.85 5.04 4.94 4.90 4.90 

Scale 0.78 0.78 0.77 0.76 0.75 

 
*Note: A two-step  censoring model:  (1) estimate the probability of being censored at 44, 104, and 365 
(values shown in Table 8), and (2) fit the site-specific Weibull time-to-censoring model to the data 
excluding these times.
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Table 10. Observed hazard ratios, standard errors and 95% confidence intervals from site-specific Weibull time-to censoring model 
conditional on covariates 

  Site 1 Site 2 Site 3 Site 4 Site 5 

  HR SE 95% CI HR SE 95% CI HR SE 95% CI HR SE 95% CI HR SE 95% CI 

ACEI 0.83 0.01 (0.82, 0.85) 0.82 0.01 (0.80, 0.85) 0.85 0.01 (0.83, 0.86) 0.81 0.01 (0.80, 0.83) 0.81 0.03 (0.76, 0.86) 

1+ HS 1.00 0.02 (0.97, 1.04) 1.04 0.03 (0.98, 1.10) 1.08 0.02 (1.05, 1.12) 1.05 0.02 (1.02, 1.08) 1.16 0.07 (1.03, 1.30) 

1+ EV 1.07 0.01 (1.04, 1.10) 1.06 0.02 (1.01, 1.10) 1.09 0.02 (1.06, 1.13) 1.09 0.02 (1.06, 1.12) 0.97 0.04 (0.89, 1.06) 

1+ CS 1.03 0.01 (1.01, 1.06) 1.05 0.02 (1.02, 1.09) 1.04 0.01 (1.01, 1.06) 1.01 0.01 (0.99, 1.04) 1.04 0.04 (0.96, 1.13) 

SexF 1.03 0.01 (1.01, 1.05) 1.01 0.01 (0.99, 1.04) 1.00 0.01 (0.98, 1.03) 1.02 0.01 (1.00, 1.04) 1.03 0.03 (0.97, 1.10) 

Age  

45-54 0.81 0.01 (0.79, 0.83) 0.83 0.02 (0.80, 0.87) 0.83 0.02 (0.79, 0.87) 0.82 0.01 (0.80, 0.84) 0.82 0.03 (0.76, 0.90) 

55-64 0.74 0.01 (0.72, 0.76) 0.75 0.02 (0.72, 0.79) 0.74 0.02 (0.71, 0.78) 0.76 0.01 (0.74, 0.78) 0.72 0.03 (0.66, 0.78) 

65+ 0.66 0.01 (0.64, 0.68) 0.72 0.02 (0.69, 0.75) 0.67 0.01 (0.65, 0.70) 0.69 0.01 (0.67, 0.71) 0.76 0.04 (0.68, 0.84) 

Year  

2009 1.02 0.02 (0.99, 1.05) 0.99 0.02 (0.95, 1.03) 0.95 0.02 (0.92, 0.98) 0.99 0.01 (0.96, 1.01) 0.94 0.04 (0.86, 1.03) 

2010 1.00 0.02 (0.97, 1.03) 0.99 0.02 (0.95, 1.04) 0.93 0.02 (0.90, 0.96) 0.96 0.01 (0.93, 0.99) 0.94 0.05 (0.86, 1.04) 

2011 0.99 0.02 (0.96, 1.02) 0.96 0.02 (0.92, 1.01) 0.89 0.02 (0.86, 0.92) 0.96 0.01 (0.94, 0.99) 0.94 0.05 (0.85, 1.03) 

2012 0.97 0.02 (0.94, 1.00) 1.04 0.02 (1.00, 1.09) 0.89 0.02 (0.86, 0.92) 0.97 0.01 (0.94, 1.00) 1.43 0.07 (1.30, 1.58) 
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2. Performance of Covariate Generation Procedures 

As an informal way of comparing covariates generated using multivariate normal thresholding or chain regression with those obtained from 

subject-level bootstrap samples, we summarize the means and standard errors of the simulation distributions of the pooled-data common 

probabilities in Table 11, Table 12, and   



 

Sentinel Methods Report - 22 -   Safety Signaling Methods for Survival  
Outcomes to Control for Confounding  

  in the Mini-Sentinel Distributed Database 

Table 13 (observed probability matrix shown in Table 3). Inspecting these tables, we can see that the marginal probabilities and the common 

probabilities are in very good agreement across data generation methods. 

Table 11. Simulation probabilities* using multivariate normal thresholding (n=150,000, 5,000 simulations) 

  
1+ HS 1+ EV 1+ CS SexF 45-54 55-64 65+ 2009 2010 2011 2012 

  % SE % SE % SE % SE % SE % SE % SE % SE % SE % SE % SE 
1+ HS 12.70 (0.09) 5.40 (0.06) 8.60 (0.07) 6.50 (0.06) 2.40 (0.04) 3.00 (0.04) 5.60 (0.06) 2.90 (0.04) 2.60 (0.04) 2.30 (0.04) 2.20 (0.04) 
1+ EV 5.40 (0.06) 16.60 (0.10) 7.60 (0.07) 8.80 (0.07) 3.90 (0.05) 4.00 (0.05) 4.90 (0.06) 3.90 (0.05) 3.50 (0.05) 3.10 (0.04) 3.10 (0.04) 
1+ CS 8.60 (0.07) 7.60 (0.07) 25.60 (0.11) 13.30 (0.09) 4.70 (0.05) 6.00 (0.06) 11.80 (0.08) 5.80 (0.06) 5.20 (0.06) 4.80 (0.06) 4.80 (0.06) 
SexF 6.50 (0.06) 8.80 (0.07) 13.30 (0.09) 49.90 (0.13) 11.30 (0.08) 11.90 (0.08) 16.40 (0.09) 11.70 (0.08) 10.30 (0.08) 9.20 (0.07) 8.70 (0.07) 
45-54 2.40 (0.04) 3.90 (0.05) 4.70 (0.05) 11.30 (0.08) 23.00 (0.11) 0.00 (0.00) 0.00 (0.00) 5.50 (0.06) 4.80 (0.06) 4.20 (0.05) 3.90 (0.05) 
55-64 3.00 (0.04) 4.00 (0.05) 6.00 (0.06) 11.90 (0.08) 0.00 (0.00) 23.90 (0.11) 0.00 (0.00) 5.70 (0.06) 5.00 (0.06) 4.40 (0.05) 4.10 (0.05) 
65+ 5.60 (0.06) 4.90 (0.06) 11.80 (0.08) 16.40 (0.09) 0.00 (0.00) 0.00 (0.00) 31.80 (0.11) 7.10 (0.06) 6.40 (0.06) 6.00 (0.06) 6.00 (0.06) 
2009 2.90 (0.04) 3.90 (0.05) 5.80 (0.06) 11.70 (0.08) 5.50 (0.06) 5.70 (0.06) 7.10 (0.06) 23.40 (0.11) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 
2010 2.60 (0.04) 3.50 (0.05) 5.20 (0.06) 10.30 (0.08) 4.80 (0.06) 5.00 (0.06) 6.40 (0.06) 0.00 (0.00) 20.60 (0.10) 0.00 (0.00) 0.00 (0.00) 
2011 2.30 (0.04) 3.10 (0.04) 4.80 (0.06) 9.20 (0.07) 4.20 (0.05) 4.40 (0.05) 6.00 (0.06) 0.00 (0.00) 0.00 (0.00) 18.40 (0.10) 0.00 (0.00) 
2012 2.20 (0.04) 3.10 (0.04) 4.80 (0.06) 8.70 (0.07) 3.90 (0.05) 4.10 (0.05) 6.00 (0.06) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 17.50 (0.10) 

*In diagonal cells, % is the frequency of variables averaged over all simulations, SE is the standard errors of these frequencies across all simulations. In off-
diagonal cells, % is P the frequency (%) of co-occurrence of the corresponding row and column binary variables averaged over all simulations, SE is the standard 
error of these frequencies across all simulations. 
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Table 12. Simulation probabilities* using regression chains (n=150,000, 5,000 simulations) 

  
1+ HS 1+ EV 1+ CS SexF 45-54 55-64 65+ 2009 2010 2011 2012 

  % SE % SE % SE % SE % SE % SE % SE % SE % SE % SE % SE 
1+ HS 12.70 (0.09) 5.40 (0.06) 8.60 (0.07) 6.50 (0.06) 2.00 (0.04) 2.50 (0.04) 6.10 (0.06) 2.90 (0.04) 2.50 (0.04) 2.30 (0.04) 2.30 (0.04) 
1+ EV 5.40 (0.06) 16.60 (0.10) 7.60 (0.07) 8.80 (0.07) 3.60 (0.05) 3.50 (0.05) 5.40 (0.06) 3.80 (0.05) 3.40 (0.05) 3.10 (0.04) 3.10 (0.04) 
1+ CS 8.60 (0.07) 7.60 (0.07) 25.60 (0.11) 13.30 (0.09) 4.00 (0.05) 5.20 (0.06) 12.60 (0.08) 5.80 (0.06) 5.20 (0.06) 4.80 (0.06) 4.80 (0.05) 
SexF 6.50 (0.06) 8.80 (0.07) 13.30 (0.09) 49.90 (0.13) 11.00 (0.08) 11.50 (0.08) 16.70 (0.09) 11.60 (0.08) 10.30 (0.08) 9.30 (0.07) 8.60 (0.07) 
45-54 2.00 (0.04) 3.60 (0.05) 4.00 (0.05) 11.00 (0.08) 23.00 (0.11) 0.00 (0.00) 0.00 (0.00) 5.70 (0.06) 4.90 (0.06) 4.10 (0.05) 3.70 (0.05) 
55-64 2.50 (0.04) 3.50 (0.05) 5.20 (0.06) 11.50 (0.08) 0.00 (0.00) 23.90 (0.11) 0.00 (0.00) 5.80 (0.06) 5.00 (0.06) 4.30 (0.05) 4.10 (0.05) 
65+ 6.10 (0.06) 5.40 (0.06) 12.60 (0.08) 16.70 (0.09) 0.00 (0.00) 0.00 (0.00) 31.80 (0.11) 6.80 (0.07) 6.30 (0.06) 6.10 (0.06) 6.00 (0.06) 
2009 2.90 (0.04) 3.80 (0.05) 5.80 (0.06) 11.60 (0.08) 5.70 (0.06) 5.80 (0.06) 6.80 (0.07) 23.40 (0.11) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 
2010 2.50 (0.04) 3.40 (0.05) 5.20 (0.06) 10.30 (0.08) 4.90 (0.06) 5.00 (0.06) 6.30 (0.06) 0.00 (0.00) 20.60 (0.10) 0.00 (0.00) 0.00 (0.00) 
2011 2.30 (0.04) 3.10 (0.04) 4.80 (0.06) 9.30 (0.07) 4.10 (0.05) 4.30 (0.05) 6.10 (0.06) 0.00 (0.00) 0.00 (0.00) 18.40 (0.10) 0.00 (0.00) 
2012 2.30 (0.04) 3.10 (0.04) 4.80 (0.05) 8.60 (0.07) 3.70 (0.05) 4.10 (0.05) 6.00 (0.06) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 17.50 (0.10) 

*In diagonal cells, % is the frequency of variables averaged over all simulations, SE is the standard errors of these frequencies across all simulations. In off-
diagonal cells, % is P the frequency (%) of co-occurrence of the corresponding row and column binary variables averaged over all simulations, SE is the standard 
error of these frequencies across all simulations. 
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Table 13. Probabilities in datasets simulated using bootstrap sampling (n=150,000, 5,000 simulations) 

  
1+ HS 1+ EV 1+ CS SexF 45-54 55-64 65+ 2009 2010 2011 2012 

  % SE % SE % SE % SE % SE % SE % SE % SE % SE % SE % SE 
1+ HS 12.70 (0.08) 5.40 (0.06) 8.60 (0.07) 6.50 (0.06) 2.00 (0.04) 2.50 (0.04) 6.10 (0.06) 2.90 (0.04) 2.50 (0.04) 2.30 (0.04) 2.30 (0.04) 
1+ EV 5.40 (0.06) 16.60 (0.10) 7.60 (0.07) 8.80 (0.07) 3.60 (0.05) 3.50 (0.05) 5.40 (0.06) 3.80 (0.05) 3.40 (0.05) 3.10 (0.04) 3.10 (0.05) 
1+ CS 8.60 (0.07) 7.60 (0.07) 25.60 (0.11) 13.30 (0.09) 4.10 (0.05) 5.20 (0.06) 12.60 (0.08) 5.80 (0.06) 5.20 (0.06) 4.80 (0.06) 4.80 (0.05) 
SexF 6.50 (0.06) 8.80 (0.07) 13.30 (0.09) 49.90 (0.13) 11.00 (0.08) 11.50 (0.08) 16.70 (0.09) 11.60 (0.08) 10.30 (0.08) 9.30 (0.08) 8.60 (0.07) 
45-54 2.00 (0.04) 3.60 (0.05) 4.10 (0.05) 11.00 (0.08) 23.00 (0.11) 0.00 (0.00) 0.00 (0.00) 5.70 (0.06) 4.90 (0.06) 4.10 (0.05) 3.70 (0.05) 
55-64 2.50 (0.04) 3.50 (0.05) 5.20 (0.06) 11.50 (0.08) 0.00 (0.00) 23.90 (0.11) 0.00 (0.00) 5.80 (0.06) 5.00 (0.06) 4.30 (0.05) 4.10 (0.05) 
65+ 6.10 (0.06) 5.40 (0.06) 12.60 (0.08) 16.70 (0.09) 0.00 (0.00) 0.00 (0.00) 31.80 (0.11) 6.80 (0.06) 6.30 (0.06) 6.10 (0.06) 6.00 (0.06) 
2009 2.90 (0.04) 3.80 (0.05) 5.80 (0.06) 11.60 (0.08) 5.70 (0.06) 5.80 (0.06) 6.80 (0.06) 23.40 (0.11) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 
2010 2.50 (0.04) 3.40 (0.05) 5.20 (0.06) 10.30 (0.08) 4.90 (0.06) 5.00 (0.06) 6.30 (0.06) 0.00 (0.00) 20.60 (0.10) 0.00 (0.00) 0.00 (0.00) 
2011 2.30 (0.04) 3.10 (0.04) 4.80 (0.06) 9.30 (0.08) 4.10 (0.05) 4.30 (0.05) 6.10 (0.06) 0.00 (0.00) 0.00 (0.00) 18.40 (0.10) 0.00 (0.00) 
2012 2.30 (0.04) 3.10 (0.05) 4.80 (0.05) 8.60 (0.07) 3.70 (0.05) 4.10 (0.05) 6.00 (0.06) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 17.50 (0.10) 

*In diagonal cells, % is the frequency of variables averaged over all simulations, SE is the standard errors of these frequencies across all simulations. In off-
diagonal cells, % is P the frequency (%) of co-occurrence of the corresponding row and column binary variables averaged over all simulations, SE is the standard 
error of these frequencies across all simulations. 
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3. Performance of Exposure given Covariate Procedures 

Figure 2 provides boxplot summaries of the simulation distributions of the coefficients from the pooled-
data propensity score models. The figure shows excellent agreement across covariate generation 
methods. Site-specific propensity score coefficients are shown in Appendix Figures B 1 a-e.  

Figure 2. Simulation distributions of coefficients from pooled data propensity score model (5,000 
simulations) 

 

4. Performance of Outcome Given Exposure and Covariates Generation Procedures 

Figure 3, Figure 4 and Figure 5 show boxplot summaries of the simulation distributions of the 
coefficients from a Cox PH model fit to each simulated dataset pooled over site. Specifically, the Cox PH 
model fit was a model adjusting for indicator of ACEI exposure, all covariates, and site indicator variables 
in a single model. Across data generation methods the coefficient distributions show very good 
agreement, with the exception of the bootstrap distribution for the dummy indicator for site 5. Thus, to 
make the figures viewable very extreme outliers from that site were not plotted.  The difference in the 
coefficient distribution for site 5 for the bootstrap appears to be due to the parametric model 
potentially not fitting the data very well, or from an alternate perspective, to the data not being 
particularly suitable for the estimation of hazard ratios. This can be seen more clearly in the site-specific 
figures included as Appendix Figure B 3 a-e and Figure B 4 a-e where the distributions for some of the 
coefficients under the parametric models at site 5 do not generate nearly as many extreme values. In 
practice, we may choose to exclude a data partner like site 5 because there were no events in the BB 
group in the source data which led to instability in the coefficient estimates from that site.  
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The choice of censoring model appears to have made little difference in the results. Figure 6 and Figure 
7 show boxplot summaries of model coefficients compared across censoring methods holding the 
covariate data generation method constant. 

Figure 3. Distribution of fitted coefficients from Cox PH outcome models to simulations with simple 
censoring (5,000 simulations) 
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Figure 4. Distributions of fitted coefficients from Cox PH outcome model to simulations with simple 
censoring (5,000 simulations) 
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Figure 5. Distributions of fitted coefficients from Cox PH outcome model to simulations with covariate 
adjusted censoring (5,000 simulations) 
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Figure 6. Distribution of coefficients from Cox PH outcome model fitted to simulations with different 
censoring models and multivariate normal thresholding (5,000 simulations) 
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Figure 7. Distribution of coefficients from Cox PH outcome model fitted to simulations with different 
censoring models and using regressions chains (5,000 simulations) 

 

D. DISCUSSION 

Section II has presented a simple simulation approach for generating subject level survival outcome data 
from summary level information. This is an advantage in situations where sharing subject level data is 
not possible. Because the summary level information is from real data, our simulation approach mimics 
realistic real-world data examples that can be used for future method evaluation studies. It keeps the 
main features of complex data intact, in this case marginal distributions and pairwise correlations,  and 
requires minimal summary information to conduct the simulation study. All proposed simulation 
methods in this approach share a key feature of maintaining complex confounder relationships including 
correlation between confounders. Certain methods may break down when there are strong 
interdependent confounder relationships and this would be something one would want to evaluate 
when assessing method performance. Another key feature of this approach is that it allows for complex 
relationships between the censoring mechanism and covariates. Often in simulation studies a very 
simple censoring assumption is made in which censoring is not reliant on other information such as 
covariates. In practice, censoring is strongly related to covariate information including the exposure of 
interest. For example, people who are older may be more likely to stop taking medications or switch to a 
new medication due to drug interactions given that they tend to take more medications overall, yielding 
age-dependent censoring. Further, like the example presented in this paper, censoring can also depend 
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on the exposure of interest. Those that received beta blockers were more likely to be given a 30-day 
prescription versus ACEI users who were more likely to receive a 90 day. When comparing the 
performance of statistical through simulation studies, retaining these key features allows an analyst to, 
say, narrow the focus of the simulation evaluation to datasets that resemble the data that could be 
sampled directly at a particular data network, or to mimic data coming from the different data partners 
in a data network to evaluate statistical methods meant to be deployed in a distributed fashion. 

We use this simulation approach in our simulation study presented in Section IV comparing methods for 
estimating HR using the ACEI and Angioedema example.   

III. STATISTICAL METHODS FOR THE NON-DISTRIBUTED DATA SETTING 

We will present several conditional survival regression methods that are typically applied to datasets in 
which subject level data could be shared across sites without concerns about patient privacy or concerns 
that the data are proprietary. Conditional methods can be defined as methods that condition directly on 
confounders (adjusted confounder methods) or condition on strata.   

A. COX PH REGRESSION ADJUSTING FOR CONFOUNDERS  

Assume at site s (s = 1, … , S), we observe data from participant i (i = 1,… , 𝑛𝑠) that has either received 
the exposure of interest, 𝑋𝑠𝑖 = 1, or the comparator, 𝑋𝑠𝑖 = 0. Furthermore, each participant has a set of 
baseline confounders, 𝒁𝑠𝑖, 𝛿𝑠𝑖 indicating whether they have experienced the outcome before the end of 
the study follow-up period and 0 otherwise and 𝑇𝑠𝑖 for time to event or censoring. Further, define a set 

of site indicator variables 𝑺𝑠𝑖 = (𝑆𝑠𝑖
2 ,… 𝑆𝑠𝑖

𝑆 ) where 𝑆
𝑠𝑖
𝑗

 is 1 if s=j and 0 otherwise. 

Consider an adjusted Cox's PH regression model adjusting for confounders and site indicator variables 
(Adj Confounders+Site),  

 𝜆(𝑇𝑠𝑖 ,𝛿𝑠𝑖|𝑋𝑠𝑖 ,𝒁𝑠𝑖 ,𝑺𝑠𝑖) = 𝜆0(𝑇𝑠𝑖)𝑒𝑥𝑝[𝛽𝑋
𝐴𝑑𝑗
𝑋𝑠𝑖 +𝜷𝑧 𝒁𝑠𝑖 +𝜷𝑆 𝑺𝑠𝑖 ].   (1) 

where 𝜆0(∙) is an unspecified baseline hazard function, 𝛽𝑋
𝐴𝑑𝑗

 is the log(HR) comparing the exposure of 

interest to the comparator, 𝜷𝑧  is a 1 ×  𝑝 vector of unknown confounder regression parameters, and 

𝜷𝑆 is a 1 × (𝑆 − 1) vector of unknown site regression parameters. We would estimate the regression 

model using standard partial maximum likelihood estimation to derive the fitted estimates 𝛽̂𝑥 , 𝜷̂𝑧 , and 

𝜷̂𝑆 . 

For a given analysis time we would be interested in assessing the following hypothesis: 𝐻𝑂:𝛽𝑋 = 0 
versus 𝐻𝐴 :𝛽𝑋 > 0. To assess this hypothesis, we would derive a test statistic. One standard test statistic 

is the Wald test statistic, 𝛽̂𝑋 √𝑉̂(𝛽̂𝑋)⁄ . However, it is more common to form a score test statistic (a.k.a. 

Log Rank Statistic) since it is relatively more powerful, while still being straightforward to calculate. The 
corresponding Log Rank test statistic is: 
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𝐿𝑅

= 

∑ [𝑋𝑠𝑖 −
∑ 𝑋𝑘𝑙exp(𝜷̂𝑧

(0)𝒁𝑘𝑙 + 𝜷̂𝑆
(0)𝑺𝑘𝑙){𝑘,𝑙:𝑇𝑘𝑙≥𝑇𝑠𝑖}

∑ exp(𝜷̂𝑧
(0)
𝒁𝑘𝑙 + 𝜷̂𝑆

(0)
𝑺𝑘𝑙){𝑘,𝑙:𝑇𝑘𝑙≥𝑇𝑠𝑖}

]{𝑠,𝑖:𝛿𝑠𝑖=1}

√∑ [
∑ 𝑋𝑘𝑙exp(𝜷̂𝑧

(0)
𝒁𝑘𝑙 + 𝜷̂𝑆

(0)
𝑺𝑘𝑙){𝑘,𝑙:𝑇𝑘𝑙≥𝑇𝑠𝑖}

∑ exp(𝜷̂𝑧
(0)𝒁𝑘𝑙+ 𝜷̂𝑆

(0)𝑺𝑘𝑙){𝑘,𝑙:𝑇𝑘𝑙≥𝑇𝑠𝑖}

−(
∑ 𝑋𝑘𝑙exp(𝜷̂𝑧

(0)
𝒁𝑘𝑙 + 𝜷̂𝑆

(0)
𝑺𝑘𝑙){𝑘,𝑙:𝑇𝑘𝑙≥𝑇𝑠𝑖}

∑ exp(𝜷̂𝑧
(0)𝒁𝑘𝑙 + 𝜷̂𝑆

(0)𝑺𝑘𝑙){𝑘,𝑙:𝑇𝑘𝑙≥𝑇𝑠𝑖}

)

2

]{𝑠,𝑖:𝛿𝑠𝑖=1}

 

 

where 𝜷̂𝑧
(0)

and 𝜷̂𝑆
(0)

are the fitted parameter estimates of model (1) under 𝐻𝑂 that 𝛽𝑋 = 0. Large 
positive values of LR signify that the exposure of interest has a higher hazard ratio compared to a 
comparator.  

Direct adjustment for categorical confounders performs well if the number of confounders is low 
relative to the number of outcomes observed. For the FDA Sentinel setting our datasets tend to have a 
large sample size, but we are often in the rare event setting when the number of outcomes is still 
relatively small. Therefore, as the number of confounders increases we may not be able to directly 
adjust for all of the confounders. To address this issue propensity score methods have been proposed to 
account for confounding instead and we will describe several different approaches in the following 
sections. 

B. COX PH REGRESSION ADJUSTING FOR PROPENSITY SCORES (LINEARLY, INDICATORS, OR B-
SPLINES) 

Propensity score methods are used to reduce the confounder information into a summary score to 
address large number of confounders in a more parsimonious model framework. We will outline three 
different propensity score approaches using Cox PH regression through adjustment.  

The propensity score is defined as the probability of being exposed given a set of confounders.  
Specifically, for our setting we can define it dependent on baseline confounders and site assuming the 
following logistic model,  

 𝑒𝑠𝑖 = 𝑃(𝑋𝑠𝑖 |𝒁𝑠𝑖,𝑺𝑠𝑖) = 𝑒𝑥𝑝[𝜸𝑧 𝒁𝑠𝑖 +𝜸𝑆 𝑺𝑠𝑖]/(1+ 𝑒𝑥𝑝[𝜸𝑧 𝒁𝑠𝑖+ 𝜸𝑆 𝑺𝑠𝑖 ]).    

The estimated propensity score, 𝑒̂𝑠𝑖, is derived fitting the logistic regression model using standard MLE 

theory to obtain regression parameter estimates of 𝜸𝑧  and 𝜸𝑆 . 

The most common approach to adjust for propensity score has been through a linear adjustment using 
the following Cox PH model, 

 𝜆(𝑇𝑠𝑖 ,𝛿𝑠𝑖|𝑋𝑠𝑖 ,𝒆𝑠𝑖) = 𝜆0(𝑇𝑠𝑖)𝑒𝑥𝑝[𝛽𝑋
𝑃𝑆𝐴𝑑𝑗𝑋𝑠𝑖+ 𝛽𝑝 𝑒𝑠𝑖].      (2) 

However, this approach has shown to be biased for survival outcomes as well as for continuous and 
binary outcomes likely due to residual confounding from model misspecification.(30) A more flexible 
approach to model the relationship between the propensity score and outcome is to use a set of 
propensity score indicator variables based on percentiles. Specifically, define a set of K-1 indicator 

variable𝑠 𝑒𝑠𝑖
𝑘 = 𝐼 [(𝑒𝑠𝑖 > 𝑒𝑠𝑖

(100(𝑘−1)/𝐾)%𝑡𝑖𝑙𝑒) ∩ (𝑒𝑠𝑖 ≤ 𝑒𝑠𝑖
(100𝑘/𝐾)%𝑡𝑖𝑙𝑒)] for k=2,…,K. Then include the 

indicator variables in the Cox PH regression model as follows, 

𝜆(𝑇𝑠𝑖, 𝛿𝑠𝑖 |𝑋𝑠𝑖 ,𝑺𝑠𝑖,𝒆𝑠𝑖
∙ ) = 𝜆0(𝑇𝑠𝑖)𝑒𝑥𝑝[𝛽𝑋

𝑃𝑆𝐼𝐴𝑑𝑗
𝑋𝑠𝑖+ 𝜷𝑝

𝐼 𝒆𝑖𝑠
𝐼 ],    (3) 
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where 𝒆𝑠𝑖
𝐼 = (𝑒𝑠𝑖

2 ,… , 𝑒𝑠𝑖
𝐾)𝑇 is a (K-1)x1 vector of propensity score indicator variables for site s. We call 

this method Cox PH “Adj PS Indicators”. An open research question is how to choose K the number of 
propensity score strata which will depend on number of outcomes, strength of confounding, and the 
underlying distribution of the observed propensity scores. We will vary K in the simulation study 
including 5, 10, 15, and 20 strata.  

The last approach that we will evaluate is to adjust for propensity scores using splines and in particular 
cubic b-splines with two internal knots at 33.3% and 66.6% quantiles yielding 5 parameters in the model. 
We use b-splines because they are computationally easy to fit. We will call this method Cox PH “Adj PS 
B-Splines” and it is fit using the following Cox PH model,  

𝜆(𝑇𝑠𝑖, 𝛿𝑠𝑖 |𝑋𝑠𝑖 ,𝑺𝑠𝑖,𝒆𝑠𝑖) = 𝜆0(𝑇𝑠𝑖)𝑒𝑥𝑝[𝛽𝑋
𝑃𝑆𝐵𝑆𝐴𝑑𝑗𝑋𝑠𝑖+ 𝜷𝑝

𝑏𝑠𝑓(𝒆𝑖𝑠 )],    (4) 

where 𝑓(𝒆𝑖𝑠 ) are 5 cubic b-spline basis functions. 

C. COX PH REGRESSION ADJUSTING FOR SITE-SPECIFIC PROPENSITY SCORES (INDICATORS OR 
B-SPLINES) 

Often the relationship between receiving the exposure of interest and confounders may be different at 
each site. Sites are healthcare plans across different regions throughout the US. An example of reasons 
for differences may be due to different formulary plans for dispensing of medications or the availability 
of a new vaccine. Therefore, you may not expect the uptake of a new medical product to be similar 
across healthcare plans and/or the relationship between confounders to be similar. If the uptake is 
different, but the relationship between uptake and confounders across sites is the same, then the 
previous propensity score model adjusting for site as a main effect is correctly specified. However, if the 
relationship between confounders and exposure is different across sites you may want to model site-
specific propensity score models. An example may be that at certain sites the new vaccine was primarily 
given to children at 3 months, but other sites the vaccine was given across all infant ages. Further, when 
moving to the distributed data setting site-specific propensity score information may only be available 
since data cannot be combined across sites into a single dataset. Therefore, there are multiple reasons 
site-specific propensity scores could be used and there are different approaches to adjust for them.  

The first approach, Cox PH “Adj Site-PS Indicators”, we propose and will evaluate assumes the following 
Cox PH model with adjustment for site and site-specific propensity score indicator variables interacted 
with site, 

 𝜆(𝑇𝑠𝑖, 𝛿𝑠𝑖 |𝑋𝑠𝑖 ,𝑺𝑠𝑖,𝒆𝑠𝑖
∙ ) = 𝜆0(𝑇𝑠𝑖)𝑒𝑥𝑝[𝛽𝑋

𝑆𝑖𝑡𝑒𝑃𝑆𝐼𝐴𝑑𝑗
𝑋𝑠𝑖 +𝜷𝑆 𝑺𝑠𝑖 +𝜷𝑝

1𝒆1𝑖
∙ 𝑆𝑠𝑖

1 +⋯+𝜷𝑝
𝑆𝒆𝑆𝑖

∙ 𝑆𝑠𝑖
𝑆 ],(5) 

where 𝒆𝑠𝑖
∙  is a (K-1)x1 vector of site-specific propensity score indicator variables for site s. 

The second approach, Cox PH “Adj Site-PS B-Splines”, uses b-spline basis from each site-specific 
propensity score model and adjusts for site and site-specific b-spline bases interacted with site. It is 
similar to model 5, except it replaces propensity score indicator variables with cubic b-spline bases as 
follows, 

𝜆(𝑇𝑠𝑖, 𝛿𝑠𝑖 |𝑋𝑠𝑖 ,𝑺𝑠𝑖,𝒆𝑠𝑖) = 𝜆0(𝑇𝑠𝑖)𝑒𝑥𝑝[
𝛽𝑋
𝑆𝑖𝑡𝑒𝑃𝑆𝐵𝑆𝐴𝑑𝑗

𝑋𝑠𝑖+ 𝜷𝑆 𝑺𝑠𝑖 +𝜷𝑝
1𝑓(𝒆1𝑖

∙ )𝑆𝑠𝑖
1 + ⋯

+𝜷𝑝
𝑆𝑓(𝒆𝑆𝑖)𝑆𝑠𝑖

𝑆
],(6) 

where 𝑓(𝒆𝑠𝑖) is a 5x1 vector of 5 cubic b-spline basis functions on the site-specific propensity score for 
site s. 
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D. SITE-STRATIFIED COX PH REGRESSION ADJUSTING FOR CATEGORICAL CONFOUNDERS OR 
SITE-SPECIFIC PROPENSITY SCORES (INDICATORS OR B-SPLINES) 

Instead of adjusting for site and/or confounders in the mean model as outlined in model (1) in Section 
II.A, another common method to account for confounding by site and/or confounders is to use a 
stratified Cox PH regression model. The stratified cox model makes a proportional hazard assumption in 
each site and/or confounder strata but allows for different baseline hazards between strata.  
A common approach is to do a site-stratified Cox PH model, but adjust for confounders directly in the 
regression (Stratify Site Adj Confounders). This approach accounts better for differences across sites 
compared with adjusting directly for site and therefore, reduces potential bias if there are different 
relationships between those that receive the exposure versus comparator across sites. The disadvantage 
of this approach is there may be some loss of power/efficiency relative to adjusting for site in the 
situation when a common baseline hazard assumption is valid. In the simulation study in Section III, we 
will assess whether this loss of power/efficiency occurs in the rare event setting. The specific form of the 
Cox PH regression model is, 

 𝜆(𝑇𝑠𝑖 ,𝛿𝑠𝑖|𝑋𝑠𝑖 ,𝒁𝑠𝑖) = 𝜆𝑠0(𝑇𝑠𝑖)𝑒𝑥𝑝[𝛽𝑥
𝑆𝑖𝑡𝑒𝑆𝑡𝑟𝑋𝑠𝑖 +𝜷𝑧 𝒁𝑠𝑖], for s=1,…,S.   (7) 

This method still estimates a conditional HR (exp (𝛽𝑥
𝑆𝑖𝑡𝑒𝑆𝑡𝑟), but is conditional on site as a strata and 

confounders as adjusted. However, if there are numerous confounders to adjust for one may have 
model fitting issues similar to problems when using the Cox PH adjusting for categorical confounders 
method outlined in Section II.A. We will also assess the performance of stratifying by site, but adjusting 
for site-specific propensity scores using cubic b-splines (Stratify Site Adj Site-PS B-splines) as follows, 

𝜆(𝑇𝑠𝑖, 𝛿𝑠𝑖 |𝑋𝑠𝑖 ,𝑺𝑠𝑖,𝒆𝑠𝑖) = 𝜆𝑠0(𝑇𝑠𝑖)𝑒𝑥𝑝[𝛽𝑋
𝑆𝑖𝑡𝑒𝑆𝑡𝑟𝑃𝑆𝐵𝑆𝐴𝑑𝑗𝑋𝑠𝑖 +𝜷𝑝

1𝑓(𝒆1𝑖
∙ )𝑆𝑠𝑖

1 +⋯+ 𝜷𝑝
𝑆𝑓(𝒆𝑆𝑖)𝑆𝑠𝑖

𝑆 ],(8) 

where 𝑓(𝒆𝑠𝑖) is a 5x1 vector of 5 cubic b-spline basis functions on the site-specific propensity score for 
site s. Another approach to dimension reduction would be to stratify on the propensity instead of 
adjust.  

E. PROPENSITY SCORE-STRATIFIED COX PH REGRESSION 

Stratifying on percentiles of propensity scores is another common approach to account for confounding. 
First, we will define the Cox PH “Stratify PS” method as stratifying on propensity score percentile strata. 
This method will include site as a confounder in the propensity score model similar to the methods 
outlined in Sections II.B. Then define the following stratified Cox PH model, 

 𝜆(𝑇𝑠𝑖 ,𝛿𝑠𝑖|𝑋𝑠𝑖) = 𝜆𝑘0(𝑇𝑠𝑖)𝑒𝑥𝑝[𝛽𝑥
𝑃𝑆𝑆𝑡𝑟𝑋𝑠𝑖 ], for k=1,…,K.     (9) 

Previous literature indicated that 5 (K=5) quantiles of the propensity score was sufficient to account for 
confounding(7), but it depends on the strength of confounding and distribution of the propensity scores. 
Other literature indicated that 5 was actually not enough and residual confounding still persisted. (46) 
We will vary the number of quantiles to be 5, 10, 15, and 20 in the simulation evaluation. The potential 
advantage of this method relative to propensity score adjustment methods is the relaxation of the 
proportional hazard assumption between strata. However, often an overall propensity score model may 
not be viable to estimate in a distributed data setting, but site-specific propensity score models are 
estimable. The following section will outline such a method. 
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F. SITE AND SITE-SPECIFIC PROPENSITY SCORE-STRATIFIED COX PH REGRESSION 

Another approach we will evaluate takes into account confounding by using stratified Cox PH regression 
in which the strata are defined as site and site-specific propensity score percentile strata. This Cox PH 
“Stratify Site+Site-PS” method has similar properties as the “Cox PH regression adjusting for site-specific 
propensity score indicators” method outlined in Section II.C except allowing the baseline proportional 
hazards function to vary by strata. The specific stratified Cox PH model fit is the following,   

 𝜆(𝑇𝑠𝑖 ,𝛿𝑠𝑖|𝑋𝑠𝑖) = 𝜆𝑘𝑠0(𝑇𝑠𝑖)𝑒𝑥𝑝[𝛽𝑥
𝑆𝑖𝑡𝑒𝑃𝑆𝑆𝑡𝑟𝑋𝑠𝑖], for k=1,…,K and s=1,…,S.   (10) 

This method relaxes the proportional hazards assumptions by assuming different baseline hazards 
across strata. However, this can lead to lowering power and modeling fitting issues as more strata are 
needed to control for confounding. Interacting strata with site will further increase the number of strata.  

We will evaluate if this method will be viable in the simulation study for different Sentinel settings. We 
will compare methods in terms of bias, type I error, power, and coverage. Bias was defined as the 
difference between the estimated log HR and the true conditional log HR. Type I error was defined as 
the proportion of simulations that signaled (p-value<0.05 based on Score Test) when the true 
conditional log HR was set at 0. Power was defined as the proportion of simulations that signaled given 
the true conditional log HR was set at a specified value.  Coverage was defined as the Wald 95% CI for 
the estimated HR included the true conditional HR. 

Table 14. Summary of evaluated methods 

Method Confounder Control Confounder Sharing 
Adj Confounders+Site (1) Regression on Confounders and Site 

 

Pooled 

Adj PS Indicators (3) Regression on Propensity Score (includes 
confounders and site) Indicators 

Pooled 

Adj PS B-splines (4) Regression on Propensity Score (includes 
confounders and site) B-Splines 

Pooled 

Stratify Site Adj 
Confounders (7) 

Stratify on Site and regress on categorical 
confounders 

Pooled 

Stratify PS (9) Stratify on Propensity Score (includes confounders 
and site) categories 

Pooled 

Adj Site-PS Indicators (5) Regression on Site-Specific Propensity Scores 
(includes confounders only) Indicators and adjust 
for site and interactions with site 

Site-Specific 

Adj Site-PS B-splines (6) Regression on Site-Specific Propensity Scores 
(includes confounders only) B-Splines and adjust for 
site and interactions with site 

Site-Specific 

Stratify Site Adj Site-PS B-
splines (8) 

Stratify on Site and regress on Site-Specific 
Propensity scores (includes confounders only) B-
Splines and include interactions with site 

Site-Specific 

Stratify Site+Site-PS(10) Stratify on Site and Site-Specific Propensity Scores 
(includes confounders only) categories 

Site-Specific 
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IV. SIMULATION EVALUATION FOR THE NON-DISTRIBUTED DATA SETTING 

The purpose of this simulation study was to compare the performance of regression and stratification 
methods using propensity scores (Non-Distributed Methods outlined in Section III) in a real world 
example where there are numerous sites with varying sample size, complex relationships between 
confounders (confounders are correlated), and complex relationships between confounders and 
exposure (e.g. the relationship between confounders and likelihood of receiving medication may be 
differential across sites). The reason we want to use actual data is to obtain realistic relationships 
between exposures of interest, confounders, and outcomes when assessing performance of methods. 
We will use the approach outlined in Section II to conduct the realistic data simulation. We will use two 
examples from the Mini-Sentinel Pilot study. We will first summarize the two studies in Section IV.A and 
then in Section IV.B we will provide results for the ACEI and Angioedema simulation study and Section 
IV.C we will provide results for the Rivaroxaban and Ischemic Stroke simulation study. In Section V and 
VI we will tailor and evaluate via simulation the most promising methods for the distributed data setting 
in which limited data is shared centrally by sites.  

A. PREVIOUS STUDY SUMMARIES 

1. ACEI and Angioedema Data Summary 

Angiodema is an adverse effect that is known to be more common following use of angiotensin-
converting enzyme inhibitors (ACEI) relative to other medications to control high blood pressure, such as 
beta blockers (BB).(11, 15, 22) A previous Mini-Sentinel task order(45) assessed the association between 
ACEI and angioedema -using a cohort from 2008 to 2012 within the Sentinel Network. This previous 
study used a new user cohort design in which participants were new users of either ACEI or BB and did 
not have a fill from either medication class in the 183 days before cohort entry. Once participants were 
eligible for the cohort, they did not allow re-entry in subsequent study years (only one exposure episode 
included per subject). After participants were enrolled in the study (index date) they were followed to 
determine time to first diagnosis of angioedema or censored due to disenrollment from healthcare plan, 
stopping use of the medication (+14 days added to follow-up time to allow for additional adverse events 
that may be related to medication use), or 364 days after the index date (interest in 1-year follow-up 
outcomes). A study summary is below, including the data available and cohort definitions.    

Exposure of Interest: Angiotensin-converting enzyme inhibitor (ACEI) 
Comparator: Beta Blocker (BB) 
Outcome: Time to Angioedema or censoring   

Sites: 5 Sentinel Sites 

Confounders: Age (18-44, 45-54, 55-64, 65-99), Female(M/F), Charlston/Elixhauser Combined 
Comorbidity Score ([-2,0]/1+), Emergency Room Visits (0/1+), Inpatient Hospitalization (0/1+), Year drug 
initiated (2008, 2009, 2010, 2011, 2012) 

Eligibility/Exclusion Criteria of Cohort: New user of ACEI or BB from 2008 to 2012; Continuous 
enrollment at their health plan with a drug benefit (defined as having a gap of less than 45 days 
between drug benefit enrollment periods) of at least 183 days prior to index date; Excluded if they had 
concomitantly used medications in both therapeutic classes of interest on the index date (i.e., filled 
more than 1 medication of interest on index); Excluded if they had a prior diagnosis of angioedema in 
the 183 days prior to the index date. 
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For this methods evaluation task order, we are reusing analytic datasets from 5 Sentinel Sites to conduct 
a simulation study to compare methods outlined in Section III, varying the relationship between the 
exposure of interest (ACEI) and the outcome (time to Angioedema or censoring).  

2. Rivaroxaban and Ischemic Stroke Data Summary 

We are using a subset of data assembled for the recently-conducted Mini-Sentinel Surveillance study, 
which evaluated if the new anticoagulant Rivaroxaban was associated with the adverse effect ischemic 
stroke compared to the comparator group Warfarin. The Mini-Sentinel surveillance study found an 
adjusted hazard ratio of 0.61 (95% CI: 0.47, 0.79) for the outcome Ischemic Stroke comparing 
Rivaroxaban new users to Warfarin new users.(43) The primary analysis used a 1 to M variable ratio 
propensity score exposure matching nested in each site  to control for confounding with an outcome 
Cox PH model stratified by matched sets.  

This report uses a subset of the original study data from two sites from 2013 to 2015 to conduct a 
simulation evaluation of the performance of the methods outlined in Section III. The study population is 
a new user cohort design in which participants were new users of either Rivaroxaban or Warfarin and 
did not have a fill from either medication class in the 183 days before cohort entry. We further 
restricted to those without a past history of cerebrovascular disease in the 183 days before cohort entry 
since this subset of the population has a lower outcome rate which is better to assess performance of 
the methods. Once participants were eligible for the cohort, re-entry in subsequent study years was not 
allowed (only one exposure episode included per subject). After participants were enrolled in the study 
(index date) they were followed to determine time to first diagnosis of ischemic stroke or censored due 
to disenrollment from the healthcare plan or stopping use of the medication (+7 days added to follow-
up time to allow for additional adverse events that may be related to medication use).  In this simulation, 
for simplicity, we further censored at 180 days after the index date since this is a new user cohort and 
follow-up time for most participants was less than 6 months. A study summary is below, including the 
data available and cohort definitions. Note we are using only a small subset of the >100 covariates used 
in the original study since most covariates were strongly correlated and several of them were measuring 
the same outcome (e.g. Peripheral Vascular Disease diagnostic codes and procedure codes were 
combined into a single confounder) to focus the simulation study.  The subset of covariates was selected 
a priori based on knowledge about risk factors of the outcome.  As will be shown, restricting to fewer 
covariates did not have much of an impact on the estimated risk in the study population.   

Exposure of Interest: Rivaroxaban (RIVA) 
Comparator: Warfarin (WARF) 
Outcome: Time to ischemic stroke or censoring   

Sites: 2 Sentinel Sites 

Confounders: Age (21-55, 56-65, 66-75, and 76+); Sex (M/F); Charlston/Elixhauser Combined 
Comorbidity Score (-2-0, 1-4, and 5+); Emergency Room Visits (0/1+); Inpatient Hospitalization (0/1+); 
Year (2013, 2014, and 2015); Heart Failure/Cardiomyopathy (Y/N) , Hypertension (Y/N); Hyperlipidemia 
(Y/N); Coronary Artery Disease (Y/N with Yes including a code for Myocardial Infarction, Acute Coronary 
Syndrome, Percutaneous Coronary Intervention diagnostic or procedure, or Coronary Artery Bypass 
Graft diagnostic or procedure); Peripheral Vascular Disease (Y/N with Yes including Peripheral Vascular 
Disease diagnostic or procedure code and other Arterial Embolism); Diabetes (Y/N); Renal Disease (Y/N); 
and Tobacco (Y/N). 
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Eligibility/Exclusion Criteria of Cohort: Eligible patients were those with a new diagnosis of atrial 
fibrillation or atrial flutter who were a new user of RIVA or WARF after their AF diagnosis and from 
January 1, 2013 to April 30, 2015; and continuous enrollment at their health plan with a drug benefit 
(defined as having a gap of less than 45 days between drug benefit enrollment periods) of at least 183 
days prior to index date. Patients were excluded if they had chronic dialysis, history of kidney transplant, 
end stage renal disease, mitral stenosis or mechanical heart valve, or recent joint 
replacement/arthroplasty surgery within 183 days before cohort entry. We further focused the analyses 
to the subgroup without a history of cerebrovascular disease in the 183 days before the index date 
(including any code for ischemic stroke, transient ischemic attack, other ischemic cerebrovascular 
disease diagnosis or procedure, and non-specific cerebrovascular symptoms) for the simulation study. 

B. SIMULATION STUDY FOR ACEI AND ANGIOEDEMA EXAMPLE  

1. ACEI and Angioedema Data Detailed 

We are using the ACEI and Angioedema example previously described in Section IV.A. We will first 
briefly summarize the important aspects of the data we will be mimicking in our simulation study. Table 
15 shows the sample size and outcome information by site. The total sample size across all sites is 
2,251,132 with smallest site (Site 5) having a total sample size of 62,857, while the largest site (Site 1) 
has a total sample size of 722,264. The average site sample size was 450,226. Therefore, the sample size 
at the sites is quite variable with two large sites (Site 1 and 4), two medium sites (Site 2 and 3), and one 
small site (Site 5).  

The distribution of censoring times was driven primarily by the estimated time on drugs. In claims, the 
time on drugs is estimated from a stockpiling algorithm of days supply from consecutive filled 
prescriptions. Estimated time on drug had a multimodal distribution with distinct peaks (at 30 days, 60 
days and 90 days) reflecting the typical days supply of 30 days for some prescriptions. At four of the five 
sites, the most common censoring time overall was 44 days (30 days + 14 day continuation period added 
to time on drug to allow for additional adverse events that may be related to medication use), which 
comprised approximately 25-30% of all censoring times at these four sites. At the remaining site the 
most common censoring time was 104 days which comprised approximately 37% of all censoring times.  
We will use the three most prevalent modes in the distribution of stockpiling of prescriptions times to 
help model our censoring distribution (common bumps are at 44, 104, and 194 days, but we will allow 
the data to choose the most common bumps which varied by site). Unadjusted outcome rates are 
relatively consistent across sites, yielding an unadjusted rate ratio of angioedema between 2.0 to 3.3 
comparing ACEIs versus BBs.  
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 Table 15. Sample size and outcome information by site and exposure group 

Site Exposure N Avg. Person-
Days 

Events Events/ 1,000     
P-years 

Unadjusted 
Rate Ratios 

Site 1 BB 315,378 107.0 236 2.55 2.0 

ACEI 406,886 128.9 728 5.07 

Site 2 BB 124,889 152.1 87 1.67 3.3 

ACEI 164,371 181.2 444 5.45 

Site 3 BB 209,281 129.9 130 1.75 3.0 

ACEI 291,955 154.1 647 5.25 
Site 4 BB 306,239 119.0 160 1.60 2.5 

ACEI 369,276 144.0 592 4.07 
Site 5 BB 28,942 114.7 23 2.53 2.0 

ACEI 33,915 149.9 70 5.03 

Further we present sample proportions for exposure and confounder levels by site in Table 16. We note 
that ACEIs were prescribed more often (~55%) than BBs (~45%) at all sites. Typically for a new medical 
product the exposure of interest would be less common than the comparator. We will explore such a 
new product example in the distributed portion of the report. For age, there are important differences 
across sites, and in particular, users of ACEI and BB are much older on average at Site 3 than at the other 
sites. Age is typically an important confounder (strong relationship to outcome) so methods using the 
confounders directly or site-specific propensity models may be preferable. Site 3 also has higher rates of 
comorbidities and inpatient visits which may be due to having an older population relative to other sites. 
There are also notable differences in the distribution of the year that drug exposure occurred; 
specifically, Site 1 had a much smaller proportion of drug exposures beginning in 2008 compared to the 
other sites. 
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Table 16. Exposure and confounder distributions by site 

  Site 1 Site 2 Site 3 Site 4 Site 5 

EXPOSURE 
BB 44 43 42 45 46 
ACEI 56 57 58 55 54 

CONFOUNDERS 
Age 

18-44 28 22 9 22 26 
45-54 29 25 12 24 30 
55-64 27 25 15 26 32 

65+ 17 28 63 28 13 
Sex 

Male 51 49 48 51 52 
Female 49 51 52 49 48 

Comorbidity Score 
[-2,0] 79 78 64 76 77 
1+ 21 22 36 24 24 

ED Visits 
0 81 81 84 87 79 

1+ 19 19 16 13 21 
Inpatient Visits 

0 90 91 84 86 89 

1+ 10 9 16 14 11 
Year 

2008 13 26 21 23 21 
2009 27 23 21 22 21 
2010 23 19 19 20 21 

2011 19 16 19 18 19 
2012 18 16 19 17 18 

Data depicted is the column percent (%) showing the percent of each site’s study population with a given exposure or 

confounder. 

Table 17 shows the relationship between the confounders and the exposure of interest by site. These 
are the coefficients from the observed data’s site-specific propensity score models estimating the 
propensity of being exposed to the ACEI relative to BB given the confounder conditional on all other 
confounders. There seems a similar propensity of being given ACEI relative to BB across all sites for age 
(ACEI most likely amongst those 45-64, medium likely 65+ and least likely 18-44). Site 5 shows ACEI 
being given at an even higher likelihood across all older age groups relative to other sites. ACEI are less 
likely to be given to Females compared to Males, but this relationship is less strong amongst those at 
Site 3. Those who receive ACEI are less likely to have any comorbidities, ED Visits, or Inpatient Visits and 
these relationships seem to be consistent across sites. There are some modest site differences in uptake 
of ACEI over the study years in which some sites had higher propensity to prescribe ACEI relative to BB 
starting in 2009 (Site 3, Site 4, and Site5 indicated by higher odds ratios) while the other two sites had 
very similar propensity to prescribe ACEI across all study years.  
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Table 17. Odds ratios for confounders regressed on exposure (ACEI) by site (propensity score models) 

 Site 1 Site 2 Site 3 Site 4 Site 5 
Age (Ref: 18-44) 

45-54 1.68 1.76 1.55 1.60 1.84 
55-64 1.64 1.73 1.48 1.56 1.84 
65+ 1.28 1.31 1.29 1.32 1.53 

Sex (Ref: Male) 0.61 0.62 0.85 0.64 0.58 
Comorbidity Score 1+ 0.55 0.60 0.65 0.54 0.55 

1+ ED Visits 0.82 0.72 0.84 0.85 0.80 
1+ Inpatient Visits 0.52 0.49 0.49 0.50 0.41 
Year (Ref: 2008) 

2009 1.08 1.02 1.11 1.11 1.11 
2010 1.07 1.05 1.13 1.12 1.14 

2011 1.04 0.96 1.10 1.07 1.13 
2012 1.01 0.91 1.09 1.02 1.13 

Note that a single model is run within each site and therefore each odds ratio is conditional on all other 
confounders. 
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Figure 8. Histogram showing the overlap of the propensity score distributions by exposure and site 
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Figure 8 shows the overlap between propensity score across exposure groups by site. There is very good 
overlap indicating that the assumption of positivity is likely met in this population (e.g. everyone has 
potential to receive either drug in the population) given the covariates we had available.   
 

Table 18 a and Table 18 b show the adjusted hazard ratios fitting site-specific survival models including 
the exposure of interest (ACEI) and all confounders in each model. Table 18 a shows the results fitting a 
Cox Proportional Hazards Model (Cox PH) while Table 18 b shows the results fitting a site-specific 
Weibull Accelerated Failure time model. Note that both models assume proportional hazards, but the 
Weibull Accelerated Failure time model assumes a flexible Weibull distribution on the outcome time to 
The tables indicate that both models estimate extremely similar hazards ratios and therefore the data is 
not sensitive to adding the additional assumption of the Weibull distribution.  

The findings from this example show that ACEI has a higher rate of angioedema relative to BB and that 
adjusted hazard ratios range between 2.4 and 3.6 across sites. However, the relationship between the 
confounders and angioedema is not consistent across sites for age, sex, ED visits, or year. Therefore, 
there is potential for differential relationships between outcome and confounders by site.  

We further show in Figure 9 that both the adjusted HR and estimated 95% comparing ACEI to BB are 
extremely similar across all sites between these two models. This finding is important, as the data 
generation program simulates data assuming the Weibull Accelerated Failure time model while all of the 
methods we will be evaluating in the simulation study assume a Cox PH model framework. 

Table 18 a. Adjusted hazard ratios for exposure of interest (ACEI) and confounders from site-specific 
cox proportional hazards models 

 Site 1 Site 2 Site 3 Site 4 Site 5 

EXPOSURE 
ACEI (Ref: BB) 2.41 3.64 3.40 2.98 2.39 

CONFOUNDERS 
Age (Ref: 18-44) 

45-54 0.97 1.27 0.86 1.19 1.75 

55-64 0.90 1.27 0.99 0.93 1.45 
65+ 0.89 1.14 1.08 1.19 1.43 

Sex (Ref: Male) 1.20 1.08 1.09 0.99 1.59 
Comorbidity Score 1+ 1.50 1.50 1.38 1.54 1.86 
1+ ED Visits 0.89 0.78 1.18 1.24 0.82 

1+ Inpatient Visits 1.93 1.34 1.20 1.59 1.36 
Year (Ref: 2008) 

2009 1.11 1.08 1.00 0.94 1.33 
2010 1.17 0.88 1.02 1.17 1.64 

2011 1.07 0.93 1.28 1.06 0.88 
2012 1.20 0.88 1.01 0.93 1.49 

Note that a single model is run within each site and therefore each hazard ratio is conditional on all other 
covariates in the model . 
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Table 18 b. Adjusted hazard ratios for exposure of interest (ACEI) and confounders from site-specific 
Weibull accelerated failure time models 

 
Site 1 Site 2 Site 3 Site 4 Site 5 

EXPOSURE 
ACEI (Ref: BB) 2.40 3.62 3.39 2.96 2.39 

CONFOUNDERS 
Age (Ref: 18-44) 

45-54 0.97 1.27 0.85 1.19 1.76 
55-64 0.90 1.28 0.99 0.93 1.47 
65+ 0.89 1.15 1.07 1.17 1.45 

Sex (Ref: Male) 1.20 1.08 1.09 1.00 1.58 
Comorbidity Score 1+ 1.51 1.50 1.38 1.55 1.85 

1+ ED Visits 0.89 0.79 1.19 1.25 0.82 
1+ Inpatient Visits 1.93 1.34 1.20 1.59 1.36 
Year (Ref: 2008) 

2009 1.11 1.08 1.00 0.94 1.33 
2010 1.17 0.88 1.02 1.17 1.65 

2011 1.07 0.93 1.28 1.06 0.87 
2012 1.19 0.88 1.01 0.92 1.44 

Note that a single model is run within each site and therefore each hazard ratio is conditional on all other 
covariates in the model  

Figure 9. Hazard ratios and 95% CIs by site for Weibull and Cox time-to-event models 
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2. Simulation Generation and Evaluation Study 

To mimic this ACEI and Angioedema real world data example, we generated simulated data using the 
framework detailed in Section II, but we will briefly summarize here. For each site we calculated the 
following summary statistics: 

• Confounders: Probabilities within Confounders (Table 16) and Common Probabilities between 
each confounder category and all other confounders 

• Exposure|Confounders (Propensity Model): Coefficients from a logistic model fitting the 
outcome ACEI versus BB with all covariates in the model (Table 17)  

• Outcome|Exposure and Confounders: Coefficients from a Weibull Accelerated Failure time for 
the outcome time to angioedema including exposure and confounders in the model. We use the 
true coefficients for the confounder variables at each site (Table 18 b) and alter the exposure 
coefficients depending on the strength of relationship desired.    

• Censored|Exposure, Confounders: Allowed for the three most prevalent modes in prescribing 
patterns (typically 30, 90, and 180 days, but we allowed the data to choose the most common 
modes, so they varied by site) and returned the prevalence of the modes and time of each mode 
(See Table 8 for common censoring modes by site). To model the censoring distribution 
amongst those that were not censored at any of the three most common prescribing modes we 
obtained coefficients from the Weibull Accelerated Failure time model for the outcome time to 
censoring (censor now the outcome) (Table 10) and we censored in this model at the time of 
angioedema (angioedema now the censor variable). This model was fit amongst only those that 
were not censored at the three most common prescribing modes and did not include covariates. 

These summary statistics were then used to simulate subject level datasets independently for each site, 
including simulated covariates, exposure and time-to-event or censoring. See Section II for details of 
how to simulate such data.  

We performed 2,000 simulations for each of the four different treatment effect scenarios using total 
sample sizes of 150,000 distributed by the proportionate size of each site in the example datasets. In the 
first three scenarios, the HR comparing ACEI with BB was set to 1.0, 1.5 and 2.0 and was the same at 
each site (homogeneous). The fourth scenario allowed the HR to be heterogeneous/vary by site in the 
same way that the estimates varied in the observed example data (Table 18 b and Figure 9). To calculate 
the pooled HR estimate in the setting where the HR is heterogeneous we fit a site stratified Cox PH 
model with all confounders and a single term for the effect of exposure (Model 7). This estimate of the 
HR was used as the truth for the simulations that included heterogeneity of the effect of exposure on 
outcome. For each set of simulated data, all proposed models were fit and the resulting estimates, 
standard errors, test statistics and hypothesis tests returned. Estimates of bias (on the log HR scale), 
power (using log rank tests) and coverage (log HR scale using Wald Confidence intervals) are presented 
in Table 19 and Table 20.  

3. ACEI and Angioedema Simulation Study Results 

Simulation results are presented in Table 19 and Table 20. Overall the results were favorable for all 
estimators. When the treatment effect is homogeneous among the sites (Table 19), pooled analysis 
methods – adjusting directly for confounders, adjusting for deciles of the propensity score or adjusting 
for the propensity score using B-splines – and stratification methods – stratifying on site and adjusting 
for confounders, or stratifying on deciles of the propensity score – were found to have comparable 
performance in terms of bias, type I error, power, and coverage. However, a key finding was that using 
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quintiles of the propensity score may provide insufficient control of confounding, whether used for 
adjustment or stratification. Therefore, caution should be taken in the Sentinel context when 
categorizing the propensity score. Partitioning into at least deciles whenever possible is recommended, 
especially when using a pooled propensity score model that assumes a consistent relationship between 
confounders and exposure conditional on site. Models with site-specific propensity scores tended to 
have smaller bias and higher power than their pooled-data counterparts. Nominal coverage was 
achieved by all estimators.  

In the setting with small amounts of site heterogeneity (Table 20) in which site-specific models should 
theoretically outperform pooled data models, we did not find an appreciable difference.  This likely 
reflects the moderate differences observed across sites: HRs of 2.40, 3.62, 3.39, 2.96, and 2.39, 
respectively, and is a limitation of the example we are using for this final report.   

Note at the bottom of each of the tables we present a series of estimates for reference, including a 
marginal estimator and the unadjusted estimator. Our marginal estimator estimates a HR for the 
average treatment effect (ATE) for the entire population by first estimating a conditional Cox PH 
regression model and then marginalizing that estimate to the ATE population by estimating the HR 
assuming everyone was treated compared to everyone remaining untreated similar to Austin 2013(40). 
When we state we are estimating a Marginal Stratified model, our underlying conditional Cox PH model 
adjusts for site-specific covariates and site is used as a stratification variable (Model 7). For the marginal 
simulated value, we use simulated datasets and calculate the marginal estimate on each dataset and 
present the mean estimate. We further show the unadjusted estimates to gauge the magnitude of the 
bias introduced by confounders. Across all scenarios the observed relative bias was approximately 10% 
in the direction of the null. Since we are in the rare outcome setting, the conditional HR and the 
marginal HR are approximately identical due to collapsibility conditions. Therefore, when we show bias 
we are assessing the very small difference between the marginal and conditional HR for this setting.  

Table 18  
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Table 19. Simulation results with homogeneous effects across sites (5 sites, 2,000 simulations, 
samples of size 150,000) 

  HR = 1.0 HR = 1.5 HR = 2.0 

Model Bias Type I Coverage Bias Power Coverage Bias Power Coverage 

Pooled Data 
Adj Confounders + Site  0.003 0.038 0.961 0.0003 0.670 0.956 0.006 0.989 0.959 

Adj PS Indicators          
   5 quantiles -0.010 0.035 0.958 -0.013 0.648 0.953 -0.008 0.987 0.956 
   10 quantiles -0.003 0.039 0.962 -0.005 0.657 0.954 0.000 0.989 0.957 

   15 quantiles -0.003 0.035 0.963 -0.005 0.658 0.955 0.000 0.987 0.958 
   20 quantiles 0.000 0.037 0.962 -0.002 0.664 0.955 0.003 0.987 0.957 

Adj PS B-splines 0.002 0.038 0.961 -0.001 0.664 0.957 0.005 0.989 0.958 
Stratify Site Adj Conf 0.003 0.038 0.962 0.000 0.670 0.955 0.006 0.989 0.959 
Stratify PS          

   5 quantiles -0.010 0.039 0.958 -0.013 0.666 0.953 -0.008 0.989 0.956 
   10 quantiles -0.003 0.041 0.962 -0.005 0.678 0.954 0.000 0.989 0.957 

   15 quantiles -0.003 0.039 0.963 -0.005 0.677 0.954 0.000 0.990 0.957 
   20 quantiles 0.000 0.042 0.962 -0.002 0.681 0.957 0.003 0.991 0.957 

Site-Specific 
Adj Site-PS Indicators          
   5 quantiles -0.004 0.034 0.958 -0.008 0.659 0.953 -0.003 0.988 0.956 

   10 quantiles 0.000 0.038 0.959 -0.002 0.662 0.955 0.003 0.988 0.957 
   15 quantiles 0.004 0.039 0.961 0.001 0.668 0.955 0.007 0.989 0.958 

   20 quantiles 0.004 0.040 0.958 0.002 0.664 0.954 0.007 0.989 0.956 
Adj Site-PS B-splines 0.006 0.044 0.959 0.004 0.670 0.956 0.009 0.987 0.958 
Stratify Site+Site-PS          

   5 quantiles -0.005 0.038 0.957 -0.008 0.677 0.951 -0.003 0.989 0.956 
   10 quantiles 0.000 0.044 0.959 -0.002 0.677 0.953 0.003 0.990 0.957 

   15 quantiles 0.004 0.045 0.961 0.001 0.685 0.955 0.007 0.989 0.956 
   20 quantiles 0.004 0.045 0.959 0.002 0.687 0.953 0.007 0.990 0.955 
Stratify Site Adj B-splines 0.006 0.035 0.961 0.002 0.666 0.954 0.006 0.988 0.955 

Reference Estimators Not for Methods Comparison 
Marginal Simulated 0.006  0.955 0.005  0.952  0.945 0.006 

Unadjusted -0.092  0.933 -0.095  0.916  0.914 -0.092 
* Follow the hyperlinks to find detailed descriptions of each method. 
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Table 20. Simulation results with observed treatment heterogeneity across sites (5 sites, 2000 
simulations) 

  
 HR = 2.94* 

Model Bias Power Coverage 

Pooled Data 

Adj Confounders + Site  -0.009 1.000 0.952 

Adj PS Indicators    
   5 quantiles -0.022 1.000 0.947 

   10 quantiles -0.014 1.000 0.947 
   15 quantiles -0.013 1.000 0.949 
   20 quantiles -0.010 1.000 0.951 

Adj PS B-splines -0.009 1.000 0.950 
Stratify Site Adj Conf -0.009 1.000 0.951 

Stratify PS    
   5 quantiles -0.022 1.000 0.947 

   10 quantiles -0.014 1.000 0.947 
   15 quantiles -0.013 1.000 0.949 
   20 quantiles -0.010 1.000 0.950 

Site-Specific 
Adj Site-PS Indicators    

   5 quantiles -0.019 1.000 0.948 
   10 quantiles -0.012 1.000 0.949 
   15 quantiles -0.008 1.000 0.951 

   20 quantiles -0.008 1.000 0.953 
Adj Site-PS B-splines -0.006 1.000 0.953 

Stratify Site+Site-PS    
   5 quantiles -0.019 1.000 0.948 
   10 quantiles -0.013 1.000 0.950 

   15 quantiles -0.008 1.000 0.951 
   20 quantiles -0.008 1.000 0.953 

Stratify Site Adj B-splines -0.011 1.000 0.949 
Reference Estimators Not for Methods Comparison 
Marginal Stratified 0.000   

Unadjusted -0.100 0.000 0.894 

* HR = 2.94 is the observed stratified estimate from the actual example.  
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C. SIMULATION STUDY FOR RIVAROXABAN AND ISCHEMIC STROKE EXAMPLE  

1. Rivaroxaban and Ischemic Stroke Data Detailed 

We are using the rivaroxaban and ischemic stroke example previously described in Section IV.B. We will 
first briefly summarize the important aspects of the data which we will be mimicking in our simulation 
study. Table 21 shows the sample size and outcome information by site for the entire cohort, the 
subgroup with no prior history of ischemic stroke in the last 183 days, and the subgroup with no prior 
history of cerebrovascular disease in the last 183 days. We will use the last subgroup for the simulation 
study since for statistical purposes having a rarer outcome with events not bunched so strongly at the 
beginning of the follow-up time will test methods better, but we show the results for all groups since it 
may be of interest to see the change in population and effect overall and within the subgroups. The total 
sample size across both sites is 39,197 with 15,972 (40.7%) exposed to Rivaroxaban (RIVA).  A total of 
659 ischemic stroke events were observed with 471 amongst WARF users and 188 amongst RIVA users. 
Unadjusted rate ratios showed a protective effect for using RIVA relative to WARF (overall RR=0.610). 
When focusing on the primary subgroup with no prior cerebrovascular disease, the total sample size was 
30,502 (78% of the entire study population) with 12,830 (42.1%) exposed to RIVA. Within this subgroup 
outcome rates drop substantially from 40.1 events per 1,000 people over 180 days to 17.1 amongst 
WARF users and 24.5 events per 1,000 people over 180 days to 14.0 amongst RIVA users. The 
unadjusted rate ratio was also attenuated to 0.816 overall.  

Table 21. Sample size and outcome information by site and exposure group 

Site Exposure N Avg. Person-
Days 

Events Events/ 1,000 
P-180 days 

Unadjusted 
Rate  Ratios 

Entire Cohort  
Overall WARF 23225 91.0 471 40.1 0.610 

RIVA 15972 86.6 188 24.5 
Site 1 WARF 18258 94.3 393 41.1 0.593 

RIVA 13298 89.3 161 24.4 
Site 2 WARF 4967 78.8 78 35.9 0.697 

RIVA 2674 72.8 27 25.0 
No Prior Ischemic Stroke  
Overall WARF 20492 91.5 216 20.7 0.729 

RIVA 14586 86.5 106 15.1 
Site 1 WARF 16084 94.9 183 21.6 0.708 

RIVA 12121 89.4 92 15.3 
Site 2 WARF 4408 78.9 33 17.1 0.829 

RIVA 2465 72.3 14 14.1 

No Prior Cerebrovascular Disease 
Overall WARF 17672 91.7 154 17.1 0.816 

RIVA 12830 86.5 86 14.0 
Site 1 WARF 13779 95.3 126 17.3 0.813 

RIVA 10593 89.5 74 14.0 

Site 2 
  

WARF 3893 79.0 28 16.4 0.819 
RIVA 2237 71.9 12 13.4 
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As shown in Figure 10, in the entire population, the most common censoring time was 44 days (30 days 
+14-day continuation period) overall for both medications and sites and had modes at other common 
prescription durations of 60 days, 90 days and so on as well as 180 days (end of follow-up period). 
Further as shown in Figure 11 most ischemic stroke outcomes occurred within the first 15 to 30 days. In 
contrast to the ACE inhibitor example where the outcome, angioedema, is an allergic reaction and often 
occurs soon after drug initiation, ischemic strokes would not be expected to occur rapidly following 
exposure to an anticoagulant. Figure 12 shows that amongst those with no prior history of 
cerebrovascular disease, censoring was still most common at 44 days (30 days +14-day continuation 
period) and had bumps at other common prescription durations of 60 days, 90, and so on as well as 180 
days (end of follow-up period). Further, Figure 13 shows ischemic stroke outcomes are more evenly 
distributed over time than in the overall population, but with slight elevation in the first 30 days of the 
study period. This pattern is likely partly due to the fact that most of the person-time available is early in 
the observation period.  

Figure 10. Histogram of time to censoring by site and exposure group in the entire cohort (n=39,197 at 
both sites combined) 
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Figure 11. Histogram of time to ischemic stroke by site and exposure group (entire cohort) 

 

Figure 12. Histogram of time to censoring by site and exposure group amongst those without history 
of cerebrovascular disease (n=30,502 at both sites combined) 
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Figure 13. Histogram of time to ischemic stroke by site and exposure group among those without 
history of cerebrovascular disease 

 

Table 24 presents sample proportions for exposure and confounder levels by site and different 
cerebrovascular disease subgroups. We note that WARF was prescribed more often than RIVA at both 
sites. For age, there are important differences by sites, and in particular, users of medications were 
older at Site 1 relative to Site 2. This age differences likely yields the observed lower comorbidity index 
score in Site 2 relative to Site 1. In general rates of most cardiovascular and renal outcomes are lower in 
Site 2 than in Site 1 indicating a healthier user population. Note that we do not have data for 2015 for 
Site 2. As we will show Year is not strongly related to outcome and therefore for methods purposes we 
removed it as a potential confounder in our simulation framework. 
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Table 22. Exposure and confounder distributions by site and cerebrovascular disease subgroups 

  Everyone 
No Prior Ischemic 

Stroke 
No Prior 

Cerebrovascular Disease 

  Site1 Site2 Site1 Site2 Site1 Site2 
EXPOSURE             

WARF 57.9 65.0 57.0 64.1 56.5 63.5 
RIVA 42.1 35.0 43.0 35.9 43.5 36.5 

CONFOUNDERS             
Age             

21-55 2.0 6.7 2.0 7.0 2.2 7.7 

56-65 7.8 16.5 7.9 17.4 8.2 18.5 
66-75 38.3 27.6 38.9 27.8 39.4 27.7 

76+ 52.0 49.2 51.2 47.7 50.2 46.1 
Sex (Female) 45.8 42.2 45.1 40.8 44.9 40.5 
Comorbidity Score             

-2-0 15.8 21.3 16.9 22.5 18.2 23.8 
1-4 53.0 59.0 53.8 59.4 54.6 59.4 

≥5 31.2 19.7 29.3 18.0 27.2 16.8 
ER Visits (1+) 29.2 19.6 27.7 19.2 26.3 18.3 
Inpatient Visits (1+) 52.0 51.6 48.5 47.8 46.0 45.8 

Year             
2013 24.1 63.0 24.1 62.9 24.0 62.8 

2014 56.7 37.0 56.6 37.1 56.6 37.2 
2015 19.2 0.0 19.2 0.0 19.3 0.0 

Cerebrovascular Disease 22.8 19.8 13.6 10.8 0.0 0.0 

Heart Failure/Cardiomyopathy 46.7 38.8 45.7 37.6 44.5 36.4 
Hypertension 86.5 77.9 85.6 76.6 84.6 75.2 

Hyperlipidemia 30.1 27.6 29.8 26.6 28.8 25.5 
Coronary Artery Disease 27.1 19.9 26.5 19.0 24.1 17.3 

Peripheral vascular disease 25.4 17.5 24.4 16.4 21.6 14.1 
Diabetes 39.7 29.9 39.2 29.0 38.3 28.1 
Renal Disease 24.9 14.1 24.3 13.4 23.3 12.6 

Tobacco 19.5 10.6 19.2 10.4 18.5 10.3 

*Data depicted is the column percent (%) showing the percent of each site’s study population with a given 
exposure or confounder. 
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Table 23. Odds ratios for confounders regressed on exposure (RIVA) by site (propensity score models) 

  
Everyone 

No Prior Ischemic 
Stroke 

No Prior 
Cerebrovascular 

Disease 

  Site1 Site2 Site1 Site2 Site1 Site2 
Age (Ref:21-55)             

56-65 0.86 0.80 0.85 0.77 0.80 0.77 

66-75 0.86 0.45 0.84 0.43 0.81 0.43 
76+ 0.71 0.33 0.68 0.30 0.63 0.29 

Sex (Ref: Male) 1.07 1.02 1.06 1.05 1.05 1.08 
Comorbidity Score (Ref:-2-0)             

1-4 0.81 0.87 0.81 0.87 0.82 0.85 
≥5 0.57 0.55 0.57 0.53 0.58 0.54 

1+ ER Visits 1.12 1.21 1.12 1.21 1.12 1.26 

1+ Inpatient Visits 1.17 1.09 1.22 1.11 1.26 1.11 
Year (Ref: 2013)             

2014 1.25 1.66 1.26 1.68 1.24 1.69 
2015 1.23   1.24   1.26   

Cerebrovascular Disease 0.83 0.90 0.93 1.00     

Heart Failure/Cardiomyopathy 0.89 0.94 0.88 0.95 0.88 0.94 
Hypertension 1.04 0.99 1.04 0.97 1.02 0.97 

Hyperlipidemia 1.13 1.36 1.14 1.35 1.17 1.32 
Coronary Artery Disease 0.95 0.76 0.94 0.76 0.94 0.80 
Peripheral vascular disease 0.95 0.97 0.94 1.00 0.94 0.96 

Diabetes 0.87 0.79 0.86 0.83 0.84 0.85 
Renal Disease 0.92 0.80 0.91 0.82 0.90 0.76 

Tobacco 1.18 1.02 1.18 1.06 1.18 1.01 

*Data depicted is the column percent (%) showing the percent of each site’s study population with a given 
exposure or confounder. 

Table 26 shows the relationship between the confounders and the exposure of interest by site and 
different cerebrovascular disease subgroups. These are the coefficients from the observed data’s site-
specific propensity score models estimating the propensity of being exposed to RIVA relative to WARF 
given the confounder conditional on all other confounders. There is a lower propensity to give RIVA in 
general to older age groups, but in particular in Site 2 relative to Site 1 indicating that age is likely a very 
strong confounder that is differential across site. Those with a higher comorbidity index are also more 
likely to be given WARF then RIVA which is similar across sites. Those with worse renal function are also 
more likely to be given WARF relative to RIVA. Both high comorbidity index and poor renal function are 
also related to outcome. Therefore, there are several potentially strong confounders.  
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Table 24. Odds ratios for confounders regressed on exposure (RIVA) by site (propensity score models) 

  
Everyone 

No Prior    Ischemic 
Stroke 

No Prior 
Cerebrovascular 

Disease 

  Site1 Site2 Site1 Site2 Site1 Site2 
Age (Ref:21-55)             

56-65 0.86 0.80 0.85 0.77 0.80 0.77 

66-75 0.86 0.45 0.84 0.43 0.81 0.43 
76+ 0.71 0.33 0.68 0.30 0.63 0.29 

Sex (Ref: Male) 1.07 1.02 1.06 1.05 1.05 1.08 
Comorbidity Score (Ref:-2-0)             

1-4 0.81 0.87 0.81 0.87 0.82 0.85 
≥5 0.57 0.55 0.57 0.53 0.58 0.54 

1+ ER Visits 1.12 1.21 1.12 1.21 1.12 1.26 

1+ Inpatient Visits 1.17 1.09 1.22 1.11 1.26 1.11 
Year (Ref: 2013)             

2014 1.25 1.66 1.26 1.68 1.24 1.69 
2015 1.23   1.24   1.26   

Cerebrovascular Disease 0.83 0.90 0.93 1.00     

Heart Failure/Cardiomyopathy 0.89 0.94 0.88 0.95 0.88 0.94 
Hypertension 1.04 0.99 1.04 0.97 1.02 0.97 

Hyperlipidemia 1.13 1.36 1.14 1.35 1.17 1.32 
Coronary Artery Disease 0.95 0.76 0.94 0.76 0.94 0.80 
Peripheral vascular disease 0.95 0.97 0.94 1.00 0.94 0.96 

Diabetes 0.87 0.79 0.86 0.83 0.84 0.85 
Renal Disease 0.92 0.80 0.91 0.82 0.90 0.76 

Tobacco 1.18 1.02 1.18 1.06 1.18 1.01 

Figure 10 shows the overlap between propensity score across exposure groups by site amongst those 
without prior cerebrovascular disease (figures look similar for everyone and those with prior ischemic 
stroke; data not shown). There is very good overlap indicating that the assumption of positivity is likely 
met in this population (e.g. everyone has potential to receive either drug in the population) given the 
covariates we had available.  
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Figure 14. Histogram showing the overlap of the propensity score distributions by exposure and site 
amongst those without history of cerebrovascular disease 

 

Table 25 a and Table 25 b show the adjusted hazard ratios fitting site-specific survival models including 
the exposure of interest (RIVA) and all confounders in each model. Table 25 a shows the results fitting a 
Cox Proportional Hazards Model (Cox PH) while Table 25 b shows the results fitting a site-specific 
Weibull Accelerated Failure time model. 

The findings from this analysis show that in the entire population RIVA has an overall adjusted hazard 
ratio of 0.70 (0.58, 0.83) of ischemic stroke relative to WARF and that the adjusted hazard ratios range 
from 0.67 to 0.89 across sites. The overall adjusted hazard ratio was calculated pooling the sites data 
and running a Cox PH model adjusting for all confounders and site in a single model. However, when we 
restrict the analyses to the subset to ~80% of the population with no prior cerebrovascular disease, the 
adjusted hazard ratio is attenuated to 0.90 (0.68, 1.17) ranging from 0.88 to 0.94 across the sites. 
Further, the relationship between the confounders, exposure, and ischemic stroke are not consistent 
across sites for age, comorbidity index, cardiovascular disease, and renal disease. Therefore, there is 
potential for differential relationships between outcome and confounders by site. 
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Table 25 a. Adjusted hazard ratios for ischemic stroke by exposure of interest (RIVA) and confounders 
from site-specific Cox proportional hazards models 

  
Everyone 

No Prior Ischemic 
Stroke 

No Prior 
Cerebrovascular 

Disease 
  Site1 Site2 Site1 Site2 Site1 Site2 

EXPOSURE             
RIVA 0.67 0.89 0.78 0.97 0.88 0.94 

CONFOUNDERS       

Age (Ref:21-55)       

56-65 0.91 2.26 0.54 2.63 0.55 2.55 
66-75 0.84 1.59 0.66 1.67 0.83 1.31 
76+ 1.12 2.48 1.07 2.55 1.14 2.08 

Sex (Ref: Male) 1.26 1.21 1.39 1.18 1.37 1.37 
Comorbidity Score (Ref:-2-0)       

1-4 1.05 1.26 1.08 1.06 1.14 0.94 
≥5 1.53 2.32 1.78 1.80 1.95 1.72 

1+ ER Visits 1.00 1.05 0.90 1.22 0.84 1.12 

1+ Inpatient Visits 2.06 1.77 1.52 0.93 1.37 0.90 
Year (Ref: 2013)       

2014 1.05 0.98 1.09 1.00 0.98 1.15 
2015 1.00  1.05  0.82  

Cerebrovascular Disease 4.70 4.96 1.98 1.09   

Heart Failure/Cardiomyopathy 1.06 1.25 1.02 1.04 1.18 1.04 
Hypertension 0.82 1.45 0.69 1.64 0.63 1.90 

Hyperlipidemia 1.21 0.82 1.14 0.71 1.07 0.61 
Coronary Artery Disease 0.78 1.10 0.87 1.63 1.02 1.71 
Peripheral vascular disease 0.99 0.58 1.08 1.22 0.95 1.73 

Diabetes 1.10 1.10 1.21 1.12 1.20 1.04 
Renal Disease 1.01 0.68 1.19 0.87 1.12 0.69 

Tobacco 0.95 1.05 1.08 1.18 1.28 1.17 

Note that a single model is run within each site and therefore each hazard ratio is conditional on all other 
covariates in the model  
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Table 25 b. Adjusted hazard ratios for ischemic stroke by exposure of interest (RIVA) and confounders 
from site-specific Weibull accelerated failure time models 

  
Everyone No Prior    Ischemic 

Stroke 
No Prior 

Cerebrovascular 
Disease 

  Site1 Site2 Site1 Site2 Site1 Site2 

EXPOSURE             
RIVA 0.68 0.89 0.78 0.97 0.89 0.94 

CONFOUNDERS             
Age (Ref:21-55)             

56-65 0.90 2.24 0.54 2.58 0.54 2.50 
66-75 0.84 1.57 0.66 1.63 0.83 1.29 
76+ 1.11 2.44 1.06 2.48 1.13 2.03 

Sex (Ref: Male) 1.26 1.20 1.39 1.17 1.37 1.37 
Comorbidity Score (Ref:-2-0)             

1-4 1.05 1.25 1.08 1.06 1.13 0.95 
≥5 1.54 2.31 1.78 1.80 1.96 1.73 

1+ ER Visits 1.00 1.04 0.90 1.22 0.84 1.12 

1+ Inpatient Visits 2.06 1.76 1.52 0.94 1.37 0.90 
Year (Ref: 2013)             

2014 1.05 1.10 1.09 1.08 0.98 1.23 
2015 1.06 

 
1.09 

 
0.85 

 

Cerebrovascular Disease 4.69 4.96 1.97 1.09 
  

Heart Failure/Cardiomyopathy 1.07 1.26 1.02 1.04 1.18 1.03 
Hypertension 0.82 1.43 0.69 1.64 0.63 1.90 

Hyperlipidemia 1.21 0.82 1.14 0.71 1.07 0.61 
Coronary Artery Disease 0.78 1.09 0.87 1.62 1.02 1.70 
Peripheral vascular disease 0.99 0.58 1.08 1.23 0.95 1.73 

Diabetes 1.10 1.10 1.22 1.12 1.21 1.04 
Renal Disease 1.01 0.68 1.19 0.87 1.12 0.69 

Tobacco 0.95 1.06 1.08 1.18 1.28 1.17 

Note that a single model is run within each site and therefore each hazard ratio is conditional on all other 
covariates in the model  

Table 25  
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Table 26. Adjusted hazard ratios for time to censoring by exposure of interest (RIVA) and confounders 
from site-specific Weibull accelerated failure time models 

  No Prior 
Cerebrovascular Disease 

  Site 1 Site2 

EXPOSURE     

RIVA 1.05 0.95 

CONFOUNDERS     

Age (Ref:21-55)     

56-65 1.03 0.86 

66-75 0.92 0.69 

76+ 0.92 0.69 

Sex (Ref: Male) 1.02 0.99 

Comorbidity Score (Ref:-2-0)     

4-Jan 1.03 0.97 

≥5 1.14 1.06 

1+ ER Visits 1.05 1.03 

1+ Inpatient Visits 1.13 1.06 

Year (Ref: 2013)   

2014 1.58 4.10 

2015 8.87 
 

Heart Failure/Cardiomyopathy 0.99 1.00 

Hypertension 0.97 0.95 

Hyperlipidemia 0.99 0.90 

Coronary Artery Disease 1.01 0.99 

Peripheral vascular disease 1.02 0.96 

Diabetes 1.03 1.00 

Renal Disease 0.98 1.01 

Tobacco 1.06 1.01 
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2. Simulation Generation and Evaluation Study 

To mimic this Rivaroxaban and Ischemic Stroke real world data example, we generated simulated data 
using the framework detailed in Section II, but we will briefly summarize here. For each site we 
calculated the following summary statistics: 

• Confounders: Probabilities within Confounders (Table 23) and Common Probabilities between 
each confounder category and all other confounders 

• Exposure|Confounders (Propensity Model): Coefficients from a logistic model fitting the 
outcome RIVA versus WARF with all covariates in the model (Table 24)  

• Outcome|Exposure and Confounders: Coefficients from a Weibull Accelerated Failure time for 
the outcome time to ischemic stroke including exposure and confounders in the model. We use 
the true coefficents for the confounder variables at each site (Table 25 b) and alter the exposure 
coefficients depending on the strength of relationship desired.  

• Censored|Exposure, Confounders: Allowed for the three most prevalent modes in prescribing 
patterns (typically 30, 90, and 180 days, but we allowed the data to choose the most common 
modes, so they varied by site) and returned the prevalence of the modes and time of each mode 
(See Figure 8 for common censoring modes by site). To model the censoring distribution 
amongst those that were not censored at any of the three most common prescribing modes we 
obtained coefficients from the Weibull Accelerated Failure time model for the outcome time to 
censoring (censor now the outcome) and we censored in this model at the time of ischemic 
stroke (ischemic stroke now the censor variable) (Table 26). This model was fit amongst only 
those that were not censored at the three most common prescribing modes and did not include 
covariates. 

These summary statistics were then used to simulate datasets independently for each site, including 
simulated covariates, exposure and time-to-event or censoring. See Section II for details of how to 
simulate such data.  

We performed 2,000 simulations for each of the four different treatment effect scenarios using total 
sample sizes of 40,000 distributed by the proportionate size of each site in the example datasets. The HR 
comparing Rivaroxaban with Warfarin was set to 1.0, 0.80 and 0.67 and was the same at each site 
(homogeneous). For each set of simulated data, all proposed models were fit and the resulting 
estimates, standard errors, test statistics and hypothesis tests returned. Estimates of bias (on the log HR 
scale), power (based on log rank test) and coverage (using Wald 95% CI on log HR scale) are presented in 
Table 26.  

3. RIVA and Ischemic Stroke Simulation Study Results 

Simulation results are presented in Table 27. Overall the results were favorable for all estimators. The 
pooled analysis methods – adjusting directly for confounders, adjusting for deciles of the propensity 
score or adjusting for the propensity score using B-splines – and stratification methods – stratifying on 
site and adjusting for confounders, or stratifying on deciles of the propensity score – were found to have 
comparable performance in terms of bias, type I error, power, and coverage.  Type-I error was 
consistently lower than 0.05 for the pooled analysis relative to the site-specific propensity score 
analyses. However, contrary to the ACEI and angioedema example, we did not find a clear better 
performance in terms of bias when using 10 or 15 quantiles relative to 5 quantiles for pooled analyses. 
We did observe this expected trend when using site-specific propensity score stratification or 
adjustment indicating a clear need for more than 5 quantiles. Further, even in the pooled analysis the 
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performance was not noticeably worse when adjusting for additional quantiles. Therefore, we still 
recommend adjusting for more than 5 quantiles to assure confounding control without any large loss in 
power or coverage. Also, site-specific propensity score methods tended to perform better then pooled 
propensity score adjustment approaches. 

Table 27. Simulation results with homogeneous effects across sites (2 sites, 2,000 simulations, 
samples of size 40,000) 

 HR = 1.0 HR = 0.80 HR = 0.67 

Model Bias Type I Coverage Bias Power Coverage Bias Power Coverage 

Pooled Data 

Adj Confounders + Site  0.0008 0.042 0.955 0.0001 0.552 0.949 -0.0028 0.937 0.949 

Adj PS Indicators          

   5 quantiles -0.0008 0.044 0.956 -0.0014 0.564 0.945 -0.0044 0.941 0.950 

   10 quantiles 0.0022 0.040 0.955 0.0017 0.550 0.948 -0.0012 0.937 0.948 

   15 quantiles 0.0029 0.042 0.955 0.0024 0.545 0.948 -0.0006 0.935 0.950 

   20 quantiles 0.0032 0.041 0.956 0.0026 0.543 0.948 -0.0003 0.935 0.950 

Adj PS B-splines 0.0049 0.038 0.956 0.0044 0.537 0.951 0.0015 0.932 0.949 

Stratify Site Adj Conf 0.0007 0.043 0.955 0.0001 0.555 0.948 -0.0027 0.937 0.948 

Stratify PS          

   5 quantiles -0.0009 0.049 0.955 -0.0015 0.576 0.946 -0.0045 0.943 0.950 

   10 quantiles 0.0022 0.046 0.955 0.0017 0.561 0.947 -0.0012 0.939 0.948 

   15 quantiles 0.0029 0.045 0.955 0.0024 0.556 0.948 -0.0005 0.940 0.951 

   20 quantiles 0.0031 0.043 0.956 0.0027 0.557 0.950 -0.0003 0.938 0.950 

Site-Specific 

Adj Site-PS Indicators          

   5 quantiles -0.0096 0.055 0.954 -0.0097 0.591 0.947 -0.0125 0.949 0.952 

   10 quantiles -0.0033 0.047 0.953 -0.0035 0.570 0.948 -0.0065 0.940 0.950 

   15 quantiles -0.0030 0.045 0.954 -0.0033 0.567 0.949 -0.0063 0.941 0.950 

   20 quantiles -0.0027 0.046 0.953 -0.0030 0.562 0.949 -0.0062 0.940 0.950 

Adj Site-PS B-splines -0.0023 0.044 0.956 -0.0026 0.564 0.949 -0.0055 0.938 0.950 

Stratify Site+Site-PS          

   5 quantiles -0.0096 0.058 0.955 -0.0096 0.602 0.947 -0.0124 0.950 0.952 

   10 quantiles -0.0034 0.050 0.952 -0.0034 0.578 0.947 -0.0065 0.944 0.950 

   15 quantiles -0.0031 0.048 0.954 -0.0032 0.575 0.949 -0.0061 0.944 0.951 

   20 quantiles -0.0028 0.048 0.953 -0.0028 0.576 0.949 -0.0059 0.946 0.951 

Stratify Site Adj B-splines -0.0023 0.044 0.956 -0.0026 0.565 0.949 -0.0055 0.937 0.950 

Reference Estimators Not for Methods Comparison 

Marginal Simulated -0.0052   0.0021   -0.0033   

Unadjusted -0.1095 0.000 0.849 -0.1088 0.000 0.867 -0.1120 0.000 0.863 
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V. STATISTICAL METHODS EXTENSIONS TO THE DISTRIBUTED DATA SETTING 

There are several approaches to extend Cox PH regression and stratification to the distributed data 
setting. We will first discuss a method for de-identifying subject level data that aggregates event and 
censoring time into categories. For Cox PH stratification which does not adjust for confounders in the 
model you can actually estimate standard stratified Cox PH estimates using risk set information and 
therefore there is no difference between non-distributed and distributed application. The final approach 
we will discuss will apply a Mantel-Haenszel(2) type test statistics using site-specific regression models 
that may be more appropriate when site heterogeneity is expected.  

A. COX PH METHODS WITH AGGREGATED TIME AND CONFOUNDERS OR PROPENSITY 

SCORES 

The previous methods outlined in Section III which use Cox PH regression required subject data to 
conduct the analyses since we used continuous time to event or censoring as the outcome. We propose 
a simple approach to deidentify data by categorizing time to event or censoring instead of using 
continuous time information. This approach is viable for Sentinel both because of the rare event setting 
and because censoring time is actually naturally categorized based on prescribing patterns (e.g. 30 days 
or 90 days’ supply of the prescribed medication). Therefore, categorizing censoring time into 30 day or 
shorter intervals likely retains the majority of the information available in the actual datasets. Further, 
when using Cox PH regression methods, the actual time of event is not needed, but the ordering of the 
times is the key quantity of interest (e.g. it does not matter that in our dataset we observe the second 
event in the dataset at day 8; what matters is that the event was the second event and the population at 
risk at that second event is known). The size of bins (e.g. 7 days or 30 days) should be large enough to 
contain at least one event, but small enough not to include too many events. Therefore, if we categorize 
time of event into small enough categories to limit the number of event ties, we are maintaining the key 
features for data analysis. Even if we induce a certain number of tied event times by categorizing event 
times, the influence of the tie is minimal because the risk set information is staying relatively stable (the 
majority of censoring occurs at longer intervals and censoring is the main influence on change of r isk set 
information). More specifically, the estimated HR will change minimally when not recognizing that the 
events were not actually ties, because the only difference in the analysis with continuous data is that for 
the event that happened second, the previous tied event would have been removed from their risk set. 
Since risk sets are large, the induced tie results in a risk set changing from 49,999 to 50,000 patients, and 
therefore there is minimal influence in the actual estimate. However, we will account for ties to get the 
correct variance estimates using Efron’s approach and therefore confidence intervals may be slightly 
larger using categorized time instead of continuous time. We will evaluate this issue in our simulation 
study to see if there is any issue with bias, type I error, or power when categorizing the information.   

We will illustrate what is meant by aggregation of time and confounders for a specific dataset so that 
one can understand how we would implement this method in Sentinel. We will first define the individual 
level dataset that will be aggregated at each site to be shared across sites. First, divide the assumed two-
year study period time into quarters of a year, and categorize each participant’s start day into the 
quarter in which that person first enters the study. Often, we are interested in adjusting for time since 
prescription patterns/confounding may be different over time. Another reason to set up the data this 
way is to allow for the conduct of a surveillance study in which the analysis happens multiple times over 
a study period. Specifically, assume that study started on January 1, 2012. Then, any study participants 
who initially entered the study from January 1, 2012 through March 31, 2012 (e.g. date participant 
started taking the exposure or comparator medical product and met enrollment criteria) is assigned to 
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study quarter 1. Participants who entered the study from April 1, 2012 through June 30, 2012 are 
assigned to study quarter 2, and so on, up through study quarter 8.  

Each participant has exposure status, X, and covariates such as site of enrollment (Site = 1, 2, or 3) and 
Age Category (Age (years) = 35-39, 40-44, 45-49, 50-54, 55-59, 60-65) at study entry. At the specified 
analysis time a, they have the outcome indicator 𝛿𝑠𝑖

𝑐 (𝑎) = 𝐼(𝐸𝑠𝑖 < 𝐶𝑠𝑖 ∩𝐸𝑠𝑖 < 𝑇𝑠𝑖
𝑐 (𝑎)) which indicates if 

the participant experienced an outcome before they were censored or the current analysis time ended. 
At analysis time a, they also have the time to event or censoring variable (𝑇𝑠𝑖

𝑐 (𝑎)), defined as the 
minimum of the time to event, censoring, or analyses time, categorized into weekly categories. We will 
now walk through a test example of 10 participants at site 1 with 4 on comparator and 6 on exposure of 
interest, and will demonstrate how the dataset is created at analysis time June 30, 2012. 

Table 28. Example subject-level dataset at a site 

Enrollment 
Date Site Age Exposure 

Date of 
Outcome 

Date of 
Censoring 

Outcome 
𝜹𝒔𝒊(𝒂) 

Outcome 
Time 𝑻𝒔𝒊(𝒂) 

Jan 10, 2012 1 47 0 . . 0 172 

Feb 1, 2012 1 55 1 . Mar 20, 2012 0 48 
Feb 20, 2012 1 60 0 Apr 10, 2012 . 1 50 
Mar 12, 2012 1 64 0 . . 0 110 

Mar 31, 2012 1 58 1 . Apr 18, 2012 0 18 
Apr 25, 2012  1 46 1 May 1, 2012 . 1 6 

May 30, 2012 1 42 1 Jun 12, 2012 . 1 13 
Jun 3, 2012 1 64 0 . . 0 27 

Jun 10, 2012 1 38 1 . . 0 20 
June 29, 2012 1 39 1 . . 0 1 

The first step is to deidentify the subject-level data in Table 28 by creating categories for study quarter 
and age, and to calculate weeks from study start for Outcome Time, 𝑇𝑠𝑖

𝑐 (𝑎) as follows: 

Table 29. Example subject-level deidentified dataset at a site 

Study Qtr 
Site Age Cat Exposure Outcome 

𝜹𝒔𝒊
𝒄 (𝒂) 

Outcome Time 
𝑻𝒔𝒊
𝒄 (𝒂) in weeks 

1 1 3 0 0 25 
1 1 5 1 0 7 

1 1 6 0 1 8 
1 1 6 0 0 16 

1 1 5 1 0 3 
2 1 3 1 1 1 
2 1 2 1        1 2 

2 1 6 0 0 4 
2  1 1 1 0 3 

2 1 1 1 0 1 
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The next step is to aggregate the subject-level data so that several participants can be represented in 
each row, to provide deidentification and the smallest number of data rows possible. To do this we 
propose the following aggregate dataset: 

Table 30. Example deidentified aggregate dataset at site 

Study 
Qtr 

Site Age 
Cat 

N 𝑵𝒙 Y 𝒀𝒙 𝑬𝟏
𝟎  𝑬𝟐

𝟎  … 𝑬𝟖
𝟎  … 𝑬𝟐𝟓

𝟎  𝑪𝟏
𝟎 𝑪𝟐

𝟎 𝑪𝟑
𝟎 𝑪𝟒

𝟎 … 𝑪𝟏𝟔
𝟎  … 𝑪𝟐𝟓

𝟎  

1 1 3 1 0 0 0 0 0  0  0 0 0 0 0  0  1 

1 1 5 2 2 0 0 0 0  0  0 0 0 0 0  0  0 
1 1 6 2 0 1 0 0 0  1  0 0 0 0 0  1  0 
2 1 1 2 2 0 0 0 0  0  0 0 0 0 0  0  0 

2 1 2 1 1 1 1 0 0  0  0 0 0 0 0  0  0 
2 1 3 1 1 1 1 0 0  0  0 0 0 0 0  0  0 

2 1 6 1 0 0 0 0 0  0  0 0 0 0 1  0  0 
 

𝑬𝟏
𝟏  𝑬𝟐

𝟏  𝑬𝟑
𝟏  𝑬𝟒

𝟏  … 𝑬𝟐𝟓
𝟏  𝑪𝟏

𝟏 𝑪𝟐
𝟏 𝑪𝟑

𝟏 … 𝑪𝟕
𝟏 … 𝑪𝟐𝟓

𝟏  

0 0 0 0  0 0 0 0  0  0 
0 0 0 0  0 0 0 1  1  0 

0 0 0 0  0 0 0 0  0  0 
0 0 0 0  0 1 0 1  0  0 

0 1 0 0  0 0 0 0  0  0 
1 0 0 0  0 0 0 0  0  0 
0 0 0 0  0 0 0 0  0  0 

where within each row defining study quarter and confounder stratum, we define the following counts: 
N is total number, 𝑁𝑥  is the number exposed, Y is the total number of outcomes, 𝑌𝑥 is the number of 
exposed outcomes, 𝐸𝑊

0  is the number of outcomes in the comparator group observed at 𝑇𝑠𝑖
𝑐 (𝑎)=w, 𝐶𝑊

0  is 
the number censored in the comparator group observed at 𝑇𝑠𝑖

𝑐 (𝑎)=w, 𝐸𝑊
1  is the number of outcomes in 

the exposed group observed at 𝑇𝑠𝑖
𝑐 (𝑎)=w, and 𝐶𝑊

1  is the number censored in the exposed group 
observed at 𝑇𝑠𝑖

𝑐 (𝑎)=w. The number of rows in the dataset will be at most the number of study quarters 
times the number of confounder categories. As the sample size increases, the number of rows in the 
dataset will not increase beyond this maximum. This dataset can be securely sent to the coordinating 
center where the data can be de-aggregated to form the dataset needed to conduct the analysis.  

This aggregation method can also be used for propensity score indicators instead of specific confounder 
strata. Therefore, it can be implemented both for Cox PH with adjustment for confounders and site 
directly (Adj Confounders+Site) and Cox PH with adjustment for site specific propensity score indicators 
(Adj Site-PS Indicators). 
  



 

Sentinel Methods Report - 65 -   Safety Signaling Methods for Survival  
Outcomes to Control for Confounding  

  in the Mini-Sentinel Distributed Database 

B. SITE AND SITE-SPECIFIC PROPENSITY SCORE-STRATIFIED COX PH REGRESSION 

Conducting stratified Cox PH regression in which the strata are defined as site and site-specific 
propensity score percentile strata (Stratify Site+Site-PS) does not actually require subject level data to 
be shared across sites. The only information required to be shared across sites is a single row per event 
with the following deidentified information: site-specific propensity score percentile strata, if the event 
was exposed or the comparator group, ordering of event time within each stratum (1st event, 2nd event, 
and so on but not the actual event time) and the risk set at that time of the analysis. Specifically, the 
dataset needed would be the following:  

Table 31. Example of a stratified regression dataset 

Site 
PS Stratum Exposure Event Order 

w/in Stratum 
Number in 

Risk Set 

1 1 0 1 20000 
1 1 1 2 19500 

1 1 0 3 16000 
1 2 0 1 18000 
1 2 1 2 17999 

1  3 1 1 20000 
1 3 1 2 18000 

1 3 0 3 12000 
1 3 1 4 2000 
1 4 1 5 19500 

This is the same information used when conducting the analysis using the continuous event and 
censoring time information so this is not a new method but just an approach to simplify the data 
returned.  

C. MANTEL-HAENSZEL TYPE TEST STATISTIC IN DISTRIBUTED DATA SETTING 

To limit data transmission, an alternative to categorizing all confounders and time is for each site to run 
a site-specific model and to transmit centrally only summary statistics. Specifically, we will estimate site-

specific Cox PH models and use the HR site-specific estimate, s̂ , and calculate an overall estimate, ̂ , 

which is 
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where ws can be the sample size of the site, Ns, or the inverse of the variance of the estimator from that 

site, )ˆ(V̂ s . For the simulation study we assess the following two MH models in which we fit site Cox 

PH models adjusting for covariates directly or using the cubic B-Splines: 

MH Inv Var:  𝜆(𝑇𝑠𝑖 ,𝛿𝑠𝑖 |𝑋𝑠𝑖 ,𝒁𝑠𝑖)= 𝜆0(𝑇𝑠𝑖)𝑒𝑥𝑝[𝛽𝑆,𝑋
𝐴𝑑𝑗
𝑋𝑠𝑖 +𝜷𝑧 𝒁𝑠𝑖 ] with 𝑤𝑠 = 1/𝑉̂(𝛽̂𝑆,𝑋

𝐴𝑑𝑗
) (11) 

MH B-Splines Inv Var:  𝜆(𝑇𝑠𝑖 ,𝛿𝑠𝑖|𝑋𝑠𝑖 ,𝒆𝑠𝑖
∙ )= 𝜆0(𝑇𝑠𝑖)𝑒𝑥𝑝[𝛽𝑆,𝑋

𝐵𝑆𝑋𝑠𝑖+ 𝜷𝑝
𝑠𝑓(𝒆𝑠𝑖

∙ )] with 𝑤𝑠 = 1/𝑉̂(𝛽̂𝑆,𝑋
𝐵𝑆) (12) 

The only information necessary to send across sites is sample size, adjusted HR, and variance of the 
adjusted HR. Further, it would be preferable to also submit table 1 type information which includes the 
sample size, number of outcomes and total follow-up time by exposure and confounder categories.  

Table 32. Summary of distributed methods evaluated 

Method Confounder Control Confounder 
Sharing 

De-identify 

Adj Confounders+Site(1) Regression on Categorical 
Confounders and Site 

Pooled Aggregate Time and 
Confounders 

Adj Site-PS Indicators (5) Regression on Site-Specific 
Propensity Scores (includes 
confounders only) Indicators and 
adjust for site and interactions with 
site 

Site-Specific Aggregate Time and 
PS-Indicators 

Stratify Site+Site-PS (10) Stratify on Site and Site-Specific 
Propensity Scores (includes 
confounders only) categories 

Site-Specific Risk Sets 

MH Inv Var (11) At site regress on Categorical 
Confounders and estimate overall 
HR using Mantel-Haenzel approach 
weighting on the inverse variance of 
the log HR 

Site-Specific Summary Info 

MH B-Splines Inv Var(12) At site regress on Site-Specific 
Propensity Score (includes 
confounders only) B-splines and 
estimate overall HR using Mantel-
Haenzel approach weighting on the 
inverse variance of the log HR 

Site-Specific Summary Info 

* Numbers refer to equation number referenced earlier in the report 
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VI. SIMULATION EVALUATION FOR THE DISTRIBUTED DATA SETTING 

For this simulation evaluation we will use all of the scenarios described previously for Non-Distributed 
data in Sections IV B and C.  

A. SIMULATION DISTRIBUTION OF PROPENSITY SCORE COEFFICIENTS FROM SITE 5 

We will use the ACEI and Angioedema simulation scenario previously described in detail in Section IV B.  
We performed 2,000 simulations for each of the four different treatment effect scenarios using total 
sample sizes of 150,000 distributed by the proportionate size of each site in the example datasets. In the 
first three scenarios, the HR comparing ACEI with BB was set to 1.0, 1.5 and 2.0 and was the same at 
each site (homogeneous). The fourth scenario allowed the HR to be heterogeneous/vary by site in the 
same way that the estimates varied in the observed example data. To calculate the pooled HR estimate 
in the setting where the HR is heterogeneous we fit a site stratified Cox PH model with all confounders 
and a single term for the effect of exposure. This estimate of the HR was used as the truth for the 
simulations that included heterogeneity of the effect of exposure on outcome. For each set of simulated 
data, all proposed distributed data methods were fit and the resulting estimates, standard errors, test 
statistics and hypothesis tests returned. Estimates of bias (on the log HR scale), power and coverage are 
presented in Table 33 and Table 34. We further re-conducted the same simulation study with the 
exception of removing the very small site 5 (2.8% of the total study population) with results presented in 
Table 35 and Table 36. 

Simulation results are presented in Table 33 through Table 36. Overall the results were favorable for all 
estimators, with the exception of the Meta Analytic MH type methods. As shown in Table 33, the bias 
was consistently the largest for the MH estimators especially when there was an elevated treatment 
effect (HR=1.5 or 2.0), both when the site-specific models directly adjusted for covariates and when they 
adjusted for the propensity score using B-splines. Note that we included the use of B-splines in an 
attempt to reduce the number of parameters being estimated in site-specific models, and thereby 
reduce the bias of the MH estimators. The MH estimator’s type I error was consistently low, and 
coverage was above 95%. For example, in Table 33 the MH method when adjusting for covariates had a 
type I error of 2.9% which is statistically different from 5% (p=0.03). To assess whether the estimator’s 
poor performance was in part due to the relative imbalance caused by having one very small data 
partner contributing to the analysis (Site 5 had only 2.8% of the total study population), we conducted 
identical simulations excluding Site 5 (Table 35 and Table 36). Removing the very small site improved 
the performance of the MH estimators, but compared to the other methods evaluated here, MH 
estimators still performed relatively poorly. 

When the treatment effect is homogeneous among the sites (Table 33 and Table 35), pooled analysis 
methods and distributed methods performed very comparable in terms of bias, type I error, power, and 
coverage. They performed so well that estimates were almost the same as having continuous time to 
event information relative to de-identifying censoring and outcome time into 7 or 30-day intervals. This 
is likely due to the rare event setting as well as censoring mainly happening on fixed interval times (e.g. 
30-day prescription fills) so information loss is minimalized with additional aggregation of the 
information. Therefore, given this scenario is common in Sentinel we would recommend using this de-
identified aggregation approach since it allows for information sharing and analysis flexibly like 
subgroups to be conducted without loss of information.   

Another key finding was that using quintiles of the propensity score may provide insufficient control of 
confounding, whether used for adjustment or stratification. Therefore, caution should be taken in the 
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Sentinel context when categorizing propensity score. We did not observe less bias when we further 
partitioned data into 15 or 20 quantiles for the homogeneous treatment effect case. Nominal coverage 
was achieved by all estimators with the exception of the MH-type estimators as previously noted.  

In the setting with small amounts of site heterogeneity (Table 34 and Table 36) in which site-specific 
models should theoretically outperform pooled data models, we did not find an appreciable difference.  
This likely reflects the moderate differences observed across sites: HRs of 2.40, 3.62, 3.39, 2.96, and 
2.39, respectively and is a limitation of the example we are using for the interim report. However, we 
did notice some minor improvements when using 15 quantiles relative to 10 quantiles in this setting 
(Table 34), but this improvement was not observed after removing the small site (Table 36). Therefore, 
10 quantiles may be sufficient, but sensitivity analyses looking at 15 or 20 quantiles may also be 
recommended. 
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Table 33. Simulation results with homogeneous effects across sites (5 sites, 2,000 simulations, 
samples of size 150,000) 

  
HR = 1.0 HR = 1.5 HR = 2.0 

  Bias Type I Coverage Bias Power Coverage Bias Power Coverage 

Pooled Data 
Adj Confounders + Site                   

Continuous 0.002 0.039 0.961 0.002 0.673 0.961 0.006 0.989 0.959 
7-Day Time Interval 0.002 0.039 0.961 0.002 0.673 0.961 0.006 0.989 0.959 
30-Day Time Interval 0.002 0.039 0.961 0.002 0.673 0.961 0.006 0.989 0.959 

Site Specific 
Adj Site-PS Indicators                   

5 Quantiles                   
Continuous -0.005 0.037 0.957 -0.006 0.662 0.959 -0.003 0.988 0.956 
7-Day Time Interval -0.005 0.037 0.957 -0.006 0.661 0.959 -0.003 0.988 0.956 

30-Day Time Interval -0.005 0.037 0.957 -0.006 0.661 0.959 -0.003 0.988 0.956 
10 Quantiles                   

Continuous -0.001 0.040 0.959 0.000 0.664 0.961 0.003 0.988 0.957 
7-Day Time Interval -0.001 0.040 0.959 0.000 0.664 0.961 0.003 0.988 0.957 

30-Day Time Interval -0.001 0.040 0.959 0.000 0.665 0.960 0.003 0.988 0.957 
15 Quantiles                   

Continuous 0.003 0.041 0.961 0.004 0.670 0.960 0.007 0.989 0.958 

7-Day Time Interval 0.003 0.041 0.961 0.004 0.670 0.960 0.007 0.989 0.958 
30-Day Time Interval 0.003 0.041 0.961 0.004 0.670 0.959 0.007 0.989 0.958 

20 Quantiles                   
Continuous 0.003 0.040 0.959 0.004 0.663 0.959 0.007 0.979 0.956 
7-Day Time Interval 0.003 0.040 0.959 0.004 0.663 0.959 0.007 0.979 0.956 

30-Day Time Interval 0.003 0.040 0.960 0.004 0.662 0.959 0.007 0.979 0.956 
Stratify Site + Site-PS  

5 Quantiles -0.005 0.040 0.957 -0.006 0.681 0.958 -0.003 0.989 0.956 
10 Quantiles -0.001 0.046 0.959 0.000 0.680 0.958 0.003 0.990 0.957 
15 Quantiles 0.003 0.046 0.961 0.003 0.688 0.959 0.007 0.989 0.956 

20 Quantiles 0.003 0.046 0.960 0.004 0.689 0.958 0.007 0.990 0.955 
MH Inv. Variance -0.004 0.029 0.966 -0.014 0.610 0.966 -0.018 0.976 0.963 

MH BS Inv. Variance -0.004 0.030 0.966 -0.014 0.610 0.967 -0.019 0.975 0.960 
 Reference Estimators Not for Methods Comparison 

Marginal Simulated 0.007   0.958 0.001   0.954 -0.002   0.945 

Unadjusted -0.094   0.933 -0.094   0.923 -0.090   0.915 
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Table 34. Simulation results with observed treatment heterogeneity across sites (5 sites, 2000 
simulations) 

 HR = 2.94 

  Bias Power Coverage 
Pooled Data 

Adj Confounders + Site       
Continuous -0.007 1.000 0.952 

7-Day Time Interval -0.007 1.000 0.952 
30-Day Time Interval -0.007 1.000 0.952 

Site Specific 

Adj Site-PS Indicators       
5 Quantiles       

Continuous -0.016 1.000 0.948 
7-Day Time Interval -0.016 1.000 0.948 
30-Day Time Interval -0.016 1.000 0.948 

10 Quantiles       
Continuous -0.010 1.000 0.949 

7-Day Time Interval -0.010 1.000 0.949 
30-Day Time Interval -0.010 1.000 0.949 

15 Quantiles       

Continuous -0.006 1.000 0.951 
7-Day Time Interval -0.006 1.000 0.950 

30-Day Time Interval -0.006 1.000 0.950 
20 Quantiles       

Continuous -0.005 0.993 0.952 

7-Day Time Interval -0.005 0.993 0.952 
30-Day Time Interval -0.005 0.993 0.952 

Stratify Site + Site-PS       
5 Quantiles -0.016 1.000 0.947 

10 Quantiles -0.010 1.000 0.949 
15 Quantiles -0.006 1.000 0.951 
20 Quantiles -0.006 1.000 0.952 

MH Inv. Variance -0.041 1.000 0.944 
MH BS Inv. Variance -0.041 1.000 0.943 

Reference Estimators Not for Methods Comparison 
Marginal Stratified 0.000     
Unadjusted -0.095   0.895 
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Table 35. Simulation results with homogeneous effects across sites, after excluding the smallest site (4 
sites, 2,000 simulations, samples of size 150,000) 

  HR = 1.0 HR = 1.5 HR = 2.0 

  Bias Type I Coverage Bias Power Coverage Bias Power Coverage 

Pooled Data  
Adj Confounders + Site                   

Continuous 0.002 0.045 0.957 -0.007 0.635 0.948 0.001 0.989 0.953 
7-Day Time Interval 0.002 0.045 0.958 -0.007 0.635 0.948 0.001 0.989 0.953 
30-Day Time Interval 0.002 0.045 0.957 -0.007 0.635 0.948 0.001 0.989 0.954 

Site Specific  
Adj Site-PS Indicators                   

5 Quantiles                   
Continuous -0.005 0.041 0.961 -0.015 0.621 0.946 -0.006 0.991 0.951 
7-Day Time Interval -0.005 0.041 0.961 -0.015 0.621 0.946 -0.006 0.991 0.951 

30-Day Time Interval -0.005 0.041 0.960 -0.015 0.621 0.946 -0.006 0.991 0.951 
10 Quantiles                   

Continuous 0.000 0.043 0.961 -0.010 0.635 0.946 -0.001 0.992 0.954 
7-Day Time Interval 0.000 0.043 0.961 -0.010 0.634 0.946 -0.001 0.992 0.954 

30-Day Time Interval 0.000 0.044 0.961 -0.010 0.634 0.946 -0.001 0.992 0.954 
15 Quantiles                   

Continuous 0.004 0.047 0.960 -0.006 0.638 0.948 0.003 0.991 0.953 

7-Day Time Interval 0.004 0.047 0.960 -0.006 0.638 0.948 0.003 0.991 0.953 
30-Day Time Interval 0.004 0.047 0.960 -0.006 0.638 0.948 0.003 0.991 0.953 

20 Quantiles                   
Continuous 0.004 0.043 0.959 -0.006 0.637 0.949 0.003 0.981 0.954 
7-Day Time Interval 0.004 0.043 0.959 -0.006 0.638 0.949 0.003 0.981 0.954 

30-Day Time Interval 0.004 0.043 0.959 -0.006 0.636 0.949 0.003 0.981 0.954 
Stratify Site + Site-PS                   

5 Quantiles -0.005 0.045 0.961 -0.015 0.640 0.945 -0.007 0.992 0.951 
10 Quantiles 0.000 0.049 0.961 -0.010 0.652 0.947 -0.001 0.992 0.954 
15 Quantiles 0.004 0.053 0.962 -0.006 0.658 0.948 0.003 0.993 0.955 

20 Quantiles 0.004 0.054 0.960 -0.006 0.659 0.949 0.003 0.992 0.955 
MH Inv. Variance -0.001 0.036 0.965 -0.020 0.588 0.956 -0.016 0.982 0.958 

MH BS Inv. Variance -0.001 0.034 0.965 -0.020 0.586 0.956 -0.016 0.982 0.958 
Reference Estimators Not for Methods Comparison 
Marginal Simulated 0.000   0.955 0.007   0.952 0.010   0.955 

Unadjusted -0.090   0.929 -0.100   0.914 -0.093   0.914 
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Table 36. Simulation results with observed treatment heterogeneity across sites after excluding the 
smallest site (4 sites, 2000 simulations, samples of size 150,000) 

  HR = 2.94 

  Bias Power Coverage 

Pooled Data 
Adj Confounders + Site       

Continuous 0.001 1.000 0.945 
7-Day Time Interval 0.001 1.000 0.945 
30-Day Time Interval 0.001 1.000 0.945 

Site Specific 
Adj Site-PS Indicators    

5 Quantiles    

Continuous -0.007 1.000 0.945 
7-Day Time Interval -0.007 1.000 0.945 

30-Day Time Interval -0.007 1.000 0.947 
10 Quantiles    

Continuous -0.002 1.000 0.945 
7-Day Time Interval -0.002 1.000 0.946 

30-Day Time Interval -0.002 1.000 0.946 
15 Quantiles    

Continuous 0.002 1.000 0.945 

7-Day Time Interval 0.002 1.000 0.945 
30-Day Time Interval 0.002 1.000 0.945 

20 Quantiles    

Continuous 0.002 0.991 0.947 
7-Day Time Interval 0.002 0.991 0.947 

30-Day Time Interval 0.002 0.991 0.946 
Stratify Site + Site-PS    

5 Quantiles -0.007 1.000 0.946 
10 Quantiles -0.002 1.000 0.946 
15 Quantiles 0.002 1.000 0.946 

20 Quantiles 0.002 1.000 0.947 
MH Inv. Variance -0.035 1.000 0.943 

MH BS Inv. Variance -0.035 1.000 0.944 
 Reference Estimators Not for Methods Comparison 
Marginal Stratified 0.000     

Unadjusted -0.090   0.907 
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B. SIMULATION STUDY FOR RIVAROXABAN AND ISCHEMIC STROKE EVALUATION 

We will use the Rivaroxaban and Ischemic stroke simulation scenario previously described in detail in 
Section IV C. We performed 2,000 simulations for each of the four different treatment effect scenarios 
using total sample sizes of 40,000 1distributed by the proportionate size of each site in the example 
datasets. The HR comparing RIVA with WARF was set to 1.0, 0.80 and 0.67 and was the same at each site 
(homogeneous). For each set of simulated data, all proposed distributed data methods were fit and the 
resulting estimates, standard errors, test statistics and hypothesis tests returned. Estimates of bias (on 
the log HR scale), power and coverage are presented in Table 37. 

Overall the results were favorable for all estimators, but the Meta Analytic MH type methods had 
slightly less power than the other approaches. However, bias was not an issue for the MH type methods 
as was shown in the other Angioedema and ACEI example. This is likely due to only having two sites that 
were also not as different in sample size relative to the other example.  

We found that again pooled analysis methods and distributed methods performed comparably in terms 
of bias, type I error, power, and coverage. They performed so well that estimates were almost the same 
as having continuous time to event information relative to de-identifying censoring and outcome time 
into 7 or 30-day intervals. This is likely due to the rare event setting as well as censoring mainly 
happening at fixed interval times (e.g. 30-day prescription fills) so information loss is minimized with 
additional aggregation of the information. Therefore, given that this scenario is common in Sentinel, we 
would recommend using this de-identified aggregation approach since it allows for information sharing. 
Another advantage is that subgroup analyses can be easily conducted given one includes the subgroup 
covariate in the returned dataset. Other deidentification approaches such as PS stratification which 
shares risk set information stratified by PS stratum and MH type methods do not provide the 
information to easily allow subgroup analyses to be conducted centrally on the same datasets.    

Another key finding was that using quintiles of the propensity score may provide insufficient control of 
confounding, whether used for adjustment or stratification. Therefore, caution should be taken in the 
Sentinel context when categorizing propensity score. We observed less bias when we further partitioned 
data into 15 or 20 quantiles. This was a slightly different finding than in the ACEI and angioedema 
example and therefore provides some recommendation for minimally using 10 quantiles with further 
sensitivity analyses for 15 or 20 quantiles.  
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Table 37. Simulation results with homogeneous effects across sites (2 sites, 2,000 simulations, 
samples of size 40,000) 

  
HR = 1.0 HR = 0.80 HR = 0.67 

  Bias Type I Coverage Bias Power Coverage Bias Power Coverage 

Pooled Data 
Adj Confounders + Site                   

Continuous 0.0008 0.042 0.955 0.0001 0.552 0.949 -0.0028 0.937 0.949 
7-Day Time Interval 0.0008 0.042 0.955 0.0001 0.553 0.949 -0.0028 0.937 0.950 

30-Day Time Interval 0.0007 0.041 0.955 0.0002 0.550 0.949 -0.0027 0.936 0.951 
Site Specific 
Adj Site-PS Indicators          

5 Quantiles          
Continuous -0.0096 0.055 0.954 -0.0097 0.591 0.947 -0.0125 0.949 0.952 

7-Day Time Interval -0.0096 0.055 0.954 -0.0097 0.591 0.947 -0.0125 0.948 0.952 
30-Day Time Interval -0.0096 0.054 0.955 -0.0096 0.590 0.948 -0.0125 0.948 0.952 

10 Quantiles          
Continuous -0.0033 0.047 0.953 -0.0035 0.570 0.948 -0.0065 0.940 0.950 
7-Day Time Interval -0.0033 0.047 0.953 -0.0035 0.570 0.948 -0.0065 0.941 0.950 

30-Day Time Interval -0.0033 0.046 0.953 -0.0034 0.567 0.948 -0.0065 0.940 0.950 
15 Quantiles          

Continuous -0.0030 0.045 0.954 -0.0033 0.567 0.949 -0.0063 0.941 0.950 
7-Day Time Interval -0.0030 0.045 0.954 -0.0033 0.566 0.949 -0.0063 0.940 0.950 
30-Day Time Interval -0.0030 0.045 0.954 -0.0033 0.563 0.949 -0.0062 0.941 0.951 

20 Quantiles          
Continuous -0.0027 0.046 0.953 -0.0030 0.562 0.949 -0.0062 0.940 0.950 

7-Day Time Interval -0.0027 0.046 0.953 -0.0030 0.564 0.949 -0.0062 0.940 0.950 
30-Day Time Interval -0.0027 0.045 0.953 -0.0029 0.561 0.949 -0.0061 0.940 0.951 

Stratify Site + Site-PS          

5 Quantiles -0.0096 0.058 0.955 -0.0096 0.602 0.947 -0.0124 0.950 0.952 
10 Quantiles -0.0034 0.050 0.952 -0.0034 0.578 0.947 -0.0065 0.944 0.950 

15 Quantiles -0.0031 0.048 0.954 -0.0032 0.575 0.949 -0.0061 0.944 0.951 
20 Quantiles -0.0028 0.048 0.953 -0.0028 0.576 0.949 -0.0059 0.946 0.951 

MH Inv. Variance -0.0005 0.048 0.955 0.0000 0.537 0.948 -0.0018 0.930 0.950 

MH BS Inv. Variance -0.0003 0.045 0.956 0.0003 0.538 0.950 -0.0014 0.930 0.951 
Reference Estimators Not for Methods Comparison 

Marginal Simulated -0.0052   0.0021   -0.0033   
Unadjusted -0.1095 0.000 0.849 -0.1088 0.000 0.867 -0.1120 0.000 0.863 
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VII. DISCUSSION AND CONCLUSIONS 

In this final report we have proposed and evaluated 12 different Cox PH survival methods to adjust for 
confounding including direct confounder adjustment and numerous variants of propensity score 
adjustment and stratification. The methods that performed the best included direct adjustment, 
propensity score adjustment with 10 indicator strata or more, propensity score adjustment using b-
splines, and propensity score stratification with 10 strata or more. We further showed that using site-
specific propensity scores performed equally well or better than fitting an overall propensity score. 
Therefore, since site-specific propensity scores are both more feasible in Sentinel (distributed data) and 
more scientifically appropriate since sites likely have different prescription patterns yielding different 
exposure cohorts, having equivalent or better performance is promising.  

We further found that extending methods to the distributed data setting by aggregating censoring and 
outcome time performed as well as non-distributed methods using continuous censoring and outcome 
time. This finding occurred for several reasons. First, we are applying Cox PH methods which are time 
invariant and only take into account time by order of outcome events and risk sets available at the time 
of the event. Therefore, if an outcome occurs at day 35 it only categorizes data as being available for the 
risk set after day 35. The method will give you the same result if someone was censored at day 36 as if 
they were censored at day 40 given no new outcomes occurred between day 36 and 40. Since we are in 
both in the rare event setting and censoring mainly happens at fixed time intervals (e.g. 30-day 
prescription fills) information loss is minimized with additional aggregation of the information and does 
not actually change the estimated HR that strongly and often not at all. Further, since risk sets are large, 
given most participants do not have an event, misclassifying a handful of observations as being in the 
risk set does not meaningfully change the denominator and therefore the resulting HR is not noticeably 
affected. In Sentinel, if you are applying Cox PH methods with rare events de-identifying data into 7-day 
time intervals is a simple and viable approach for conducting analyses.     

There were several limitations to the simulation evaluation. We only mimicked two medical product 
comparisons which may be limited in generalizability. For the first example dataset, ACEI compared to 
BB on the outcome angioedema, ACEI, the exposure of interest, had actually been on the market for a 
significant amount of time when the data was pulled. Thus, ACEI use was more common than a new 
medical product would normally be. We chose this comparison since it was a known positive association 
between elevated rates of Angioedema and ACEI that was published, and data were readily available to 
conduct the simulation evaluation. We further included another example which was RIVA compared to 
WARF on the outcome ischemic stroke. RIVA is a new medical product which was an advantage. 
Ischemic stroke in this population was relatively common which tends to allow for all methods to 
perform more comparably. Another limitation of both examples for survival analysis in particular was 
that most participants took the medication for a short amount of time (30 to 90 days). Potentially for 
this example a binary outcome analysis may have been more appropriate especially since most of the 
effect occurs shortly after exposure. An advantage of this type of shorter term exposure was that it 
helped us think about the effects of censoring and how it should be mimicked in a simulation evaluation.  
That is why we added censoring bumps to allow for prescribing patterns that are likely to be observed in 
future Sentinel studies. 

We also developed a new data simulation approach that mimics complex data using summary 
information.  It performed equally as well to bootstrapping and other approaches that would require 
subject data to implement.  This promising approach can be used by others in Sentinel and outside 
networks to simulate complex data with minimal data sharing.     
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Overall, this task order found that stratifying on site-specific propensity scores and adjusting for site-
specific propensity scores are methods that perform well in terms of bias, type I error, power, and 
coverage. When applying these approaches, we recommend at least 10 quantiles of the propensity 
score and to conduct sensitivity analyses for 15 or 20 quantiles. We further presented methods tailored 
to the distributed data setting that performed as well as pooled analysis methods. Therefore, these 
propensity score methods are viable to the Sentinel distributed data network and will be 
straightforward to incorporate into the system. 
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IX. APPENDICES 

A. SUMMARY OF PREVIOUS SURVIVAL TASK ORDER FINDINGS 

A previous Mini-Sentinel workgroup (Survival Workgroup I; Task Order PI: Cook(44)) developed and 
began to evaluate new statistical methods to sequentially monitor rare event outcomes that allow for 
chronically used exposures (e.g., drugs) and events that may occur distant in time from the initiation of 
drug use (e.g., acute myocardial infarction) and require survival techniques. The previous survival 
workgroup concentrated their efforts on approaches using Cox’s Proportional Hazards (PH) models(3) 
with direct adjustment for confounders in the regression model. They focused on methods that would 
be viable in the distributed data setting (e.g. subject-level data remains at the healthcare site behind 
firewalls and only deidentified data is shared across sites). Barriers to effective data sharing, such as 
privacy concerns and proprietary information policies, make pooling of subject-level data across sites 
rarely used unless deemed critical to the question of interest.  They compared two approaches: 1) Cox 
PH regression adjusting for categorical confounders and aggregating survival/censoring times 
(deidentified Cox PH regression) and 2) Mantel Haenszel (MH) type estimate in which a Cox PH 
regression model is fit at each site and then the site-specific HR are pooled together using MH methods. 
They showed via a brief simulation evaluation that in this setting (distributed and rare event) and given 
a small number of confounders the new approaches were viable based on holding the overall type I 
error and minimizing bias. They compared the new approaches to standard methods not tailored to the 
Sentinel setting: 1) Cox PH regression directly adjusting for continuous confounders (non-distributed Cox 
PH regression) and 2) Site-stratified Cox PH regression in which one stratifies on site while still adjusting 
for other confounders in the model. The new approaches used permutation for boundary formation 
which was shown to be necessary if either the outcome and/or exposure were relatively rare.  Below we 
briefly describe the main findings and limitations. 

MAIN FINDINGS: 

Under a more common outcome rate (0.05 per 10,000 study sample size yields ~500 total events), they 
found that methods perform well across all scenarios studied, and that the distributed data methods 
had similar power as the non-distributed data setting. 

• Under a more rare outcome rate (0.01 per 10,000 study sample size yields ~100 total events), 
they found that for the more common exposure rate (proportion exposed = 0.50), the Cox PH 
regression methods (both non-distributed and deidentified) outperformed the Site-Stratified 
Cox PH regression and MH type estimates. Under less common exposure (proportion = 0.10),  all 
methods did not perform as well indicated by elevated type I error especially the MH method, 
but also Cox PH regression adjusting directly for confounders. They then used permutation 
statistical inference and found methods performed better but still some elevated type I error for 
the distributed data approaches. Further, the MH indicated some loss of power.  

LIMITATIONS: 

• The previous work applied a very simple confounder model, adjusting only for two sites and 
age. Age when categorized had 5 indicator variables. There is a need to conduct a study using 
closer to real data that would be observed in Sentinel.  

• In scenarios with more confounders, there is a need to explore methods such as propensity 
scores that reduce the number of parameters to include in the model. 
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• The MH method did not perform well, so we need to assess other approaches to stratification 
such as propensity scores. Approaches to applying these methods in the Sentinel context 
needs to be explored. 

B. APPENDIX TABLES AND FIGURES FOR SECTION II 

Table B 1. Pearson correlation matrix for binary and categorical variables (n=150,000) 

Site 1 
  
  
  
  
  
  

 
HS 1+ EV 1+ CS SexF Age Cat Year 

1+ HS 1 0.436 0.331 0.014 0.077 -0.013 
1+ EV 0.436 1 0.277 0.02 0.007 0.007 
1+ CS 0.331 0.277 1 0.027 0.14 0.005 
SexF 0.014 0.02 0.027 1 -0.014 -0.007 

Age Cat 0.077 0.007 0.14 -0.014 1 0.005 
Year -0.013 0.007 0.005 -0.007 0.005 1 

Site 2  
HS 1+ EV 1+ CS SexF Age Cat Year 

1+ HS 1 0.462 0.367 0.007 0.098 0.012 
1+ EV 0.462 1 0.318 0.016 0.058 0.045 
1+ CS 0.367 0.318 1 0.034 0.165 0.059 
SexF 0.007 0.016 0.034 1 0.029 0.011 

Age Cat 0.098 0.058 0.165 0.029 1 0.021 
Year 0.012 0.045 0.059 0.011 0.021 1 

Site 3  
HS 1+ EV 1+ CS SexF Age Cat Year 

1+ HS 1 0.17 0.378 -0.016 0.096 0.008 
1+ EV 0.17 1 0.167 0.031 -0.027 0.029 
1+ CS 0.378 0.167 1 -0.014 0.181 0.038 
SexF -0.016 0.031 -0.014 1 0.022 0.008 

Age Cat 0.096 -0.027 0.181 0.022 1 0.048 
Year 0.008 0.029 0.038 0.008 0.048 1 

Site 4  
HS 1+ EV 1+ CS SexF Age Cat Year 

1+ HS 1 0.091 0.394 0.018 0.114 0.003 
1+ EV 0.091 1 0.123 0.035 -0.056 0.011 
1+ CS 0.394 0.123 1 0.038 0.181 0.012 
SexF 0.018 0.035 0.038 1 0.053 -0.004 

Age Cat 0.114 -0.056 0.181 0.053 1 0.031 
Year 0.003 0.011 0.012 -0.004 0.031 1 

Site 5  
HS 1+ EV 1+ CS SexF Age Cat Year 

1+ HS 1 0.444 0.341 0.025 0.023 0.012 
1+ EV 0.444 1 0.281 0.023 -0.016 0.022 
1+ CS 0.341 0.281 1 0.038 0.072 -0.005 
SexF 0.025 0.023 0.038 1 -0.015 0.022 

Age Cat 0.023 -0.016 0.072 -0.015 1 0.067 
Year 0.012 0.022 -0.005 0.022 0.067 1 
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Table B 2. Site-specific regression chain coefficients for binary covariates (n=150,000) 

Site 1 
  
  
  
  

 
Int 1+ HS 1+ EV 1+ CS 

1+ HS 0.101       
1+ EV -1.859 2.734 

  

1+ CS -1.779 1.593 0.942 
 

SexF -0.069 0.008 0.064 0.114 
Site 2 
  
  
  
  

 
Int 1+ HS 1+ EV 1+ CS 

1+ HS 0.097       
1+ EV -1.884 2.964 

  

1+ CS -1.740 1.778 1.085 
 

SexF 0.007 -0.072 0.050 0.167 
Site 3 
  
  
  
  

 
Int 1+ HS 1+ EV 1+ CS 

1+ HS 0.160       
1+ EV -1.905 1.045 

  

1+ CS -1.036 2.100 0.685 
 

SexF 0.060 -0.092 0.198 -0.055 
Site 4 
  
  
  
  

 
Int 1+ HS 1+ EV 1+ CS 

1+ HS 0.144       
1+ EV -2.028 0.663 

  

1+ CS -1.649 2.167 0.643 
 

SexF -0.106 0.009 0.185 0.157 
Site 5 
  
  
  
  

 
Int 1+ HS 1+ EV 1+ CS 

1+ HS 0.107       
1+ EV -1.742 2.765 

  

1+ CS -1.697 1.626 0.903 
 

SexF -0.090 0.066 0.046 0.151 

Abbreviations: HS=Hospital Stay, EV=Emergency Department Visit, CS=Comorbidity Score, SexF=Female 
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Table B 3. Site-specific regression chain coefficients for categorical variables (n=150,000) 

Site 1  Int 1+ HS 1+ EV 1+ CS SexF 45-54 55-64 ≥65 
Age 45-54 0.069 -0.175 -0.129 0.065 -0.055 

   

 55-64 0.009 0.111 -0.351 0.283 -0.114 
   

 ≥65 -0.729 0.476 -0.345 0.997 -0.072 
   

Year 2009 0.719 -0.075 -0.033 -0.015 0.004 0.011 0.035 -0.010 
 2010 0.557 -0.115 -0.008 0.000 -0.019 0.024 0.036 0.047 
 2011 0.412 -0.186 0.003 0.007 -0.011 -0.070 -0.002 -0.042 
 2012 0.296 -0.229 0.109 0.054 -0.043 -0.027 0.062 0.046 

Site 2 
 

Int 1+ HS 1+ EV 1+ CS SexF 45-54 55-64 ≥65 
Age 45-54 0.154 -0.443 -0.080 0.090 -0.076 

   

 55-64 0.136 -0.171 -0.205 0.252 -0.045 
   

 ≥65 -0.082 0.282 -0.074 0.937 0.128 
   

Year 2009 -0.164 -0.113 0.082 0.114 -0.044 -0.007 0.040 -0.022 
 2010 -0.412 -0.290 0.205 0.198 0.023 0.016 0.035 0.052 
 2011 -0.636 -0.176 0.184 0.246 0.084 -0.014 0.049 0.091 
 2012 -0.648 -0.288 0.297 0.385 -0.010 -0.099 -0.024 0.028 

Site 3 
 

Int 1+ HS 1+ EV 1+ CS SexF 45-54 55-64 ≥65 
Age 45-54 0.227 -0.160 -0.163 0.307 -0.056 

   

 55-64 0.371 0.022 -0.244 0.656 -0.007 
   

 ≥65 1.545 0.255 -0.530 1.149 0.111 
   

Year 2009 -0.067 -0.068 0.057 0.103 -0.038 0.007 0.060 0.043 
 2010 -0.263 -0.050 0.069 0.143 0.032 0.059 0.096 0.106 

 2011 -0.482 -0.101 0.183 0.172 0.025 0.103 0.201 0.339 
 2012 -0.394 -0.106 0.197 0.188 0.015 -0.048 0.193 0.259 
Site 4 

 
Int 1+ HS 1+ EV 1+ CS SexF 45-54 55-64 ≥65 

 45-54 0.232 -0.046 -0.457 -0.029 -0.114 
   

Age 55-64 0.219 -0.020 -0.730 0.212 0.006 
   

 ≥65 -0.137 0.398 -0.658 1.001 0.252 
   

 2009 -0.153 0.002 -0.002 0.003 0.036 0.118 0.132 -0.015 
Year 2010 -0.248 -0.045 0.031 0.021 0.033 0.050 0.108 0.013 

 2011 -0.310 -0.049 0.049 0.020 0.011 0.013 0.047 0.147 
 2012 -0.389 -0.028 0.093 0.032 -0.047 -0.058 0.073 0.194 
Site 5 

 
Int 1+ HS 1+ EV 1+ CS SexF 45-54 55-64 ≥65 

Age 45-54 0.324 -0.521 0.086 -0.144 -0.192 
   

 55-64 0.311 -0.306 -0.148 0.133 -0.104 
   

 ≥65 -0.750 0.266 -0.331 0.612 -0.139 
   

Year 2009 0.099 0.196 -0.162 -0.031 -0.059 -0.124 0.013 0.149 
 2010 -0.278 -0.265 0.017 -0.065 0.158 0.022 0.177 0.523 
 2011 -0.200 0.102 -0.001 -0.269 0.079 0.068 0.105 0.385 
 2012 -0.404 0.070 0.158 -0.072 0.086 -0.061 0.200 0.773 
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Figure B 1 a. Simulation distribution of propensity score coefficients from Site 1 

 

Figure B 1 b. Simulation distribution of propensity score coefficients from Site 2 
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Figure B 1 c. Simulation distribution of propensity score coefficients from Site 3 

 

Figure B 1 d. Simulation distribution of propensity score coefficients from Site 4 
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Figure B 1 e. Simulation distribution of propensity score coefficients from Site 5 

 

Figure B 2 a. Site 1 simulation distributions of coefficients from Cox PH outcome model with simple 
censoring (5,000 simulations) 
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Figure B 2 b. Site 2 simulation distributions of coefficients from Cox PH outcome model with simple 
censoring (5,000 simulations) 

 

Figure B 2 c.  Site 3 simulation distributions of coefficients from Cox PH outcome model with simple 
censoring (5,000 simulations) 
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Figure B 2 d. Site 4 simulation distributions of coefficients from Cox PH outcome model with simple 
censoring (5,000 simulations) 

 

Figure B 2 e. Site 5 simulation distributions of coefficients from Cox PH outcome model with simple 
censoring (5,000 simulations) 
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Figure B 3 a. Site 1 simulation distributions of coefficients from Cox PH outcome model with simple 
censoring with points (5,000 simulations) 

 

Figure B 3 b. Site 2 simulation distributions of coefficients from Cox PH outcome model with simple 
censoring with points (5,000 simulations) 
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Figure B 3 c. Site 3 simulation distributions of coefficients from Cox PH outcome model with simple 
censoring with points (5,000 simulations) 

 

Figure B 3 d. Site 4 simulation distributions of coefficients from Cox PH outcome model with simple 
censoring with points (5,000 simulations) 
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Figure B 3 e. Site 5 simulation distributions of coefficients from Cox PH outcome model with simple 
censoring with points (5,000 simulations) 

 

Figure B 4 a. Site 1 simulation distributions of coefficients from Cox PH outcome model with covariate 
adjusted censoring (5,000 simulations) 
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Figure B 4 b. Site 2 simulation distributions of coefficients from Cox PH outcome model with covariate 
adjusted censoring (5,000 simulations) 

 

Figure B 4 c. Site 3 simulation distributions of coefficients from Cox PH outcome model with covariate 
adjusted censoring (5,000 simulations) 
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Figure B 4 d. Site 4 simulation distributions of coefficients from Cox PH outcome model with covariate 
adjusted censoring (5,000 simulations) 

 

Figure B 4 e. Site 5 simulation distributions of coefficients from Cox PH outcome model with covariate 
adjusted censoring (5,000 simulations) 
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C. SAFETY SURVEILLANCE AND THE ESTIMATION OF RISK IN SELECT POPULATIONS: FLEXIBLE 
METHODS TO CONTROL FOR CONFOUNDING WHILE TARGETING MARGINAL 

COMPARISONS 

1. Introduction 

Electronic health records (EHR) data have provided the opportunity for new research to improve public 
health. An important national effort is the Food and Drug Administration (FDA) Sentinel initiative 
program which has created a surveillance network with over 100 million patient lives to monitor the 
safety of approved medical products. One of the interests is to estimate the effect of exposure on the 
overall risk of binary adverse events in a select population with comparison on the population level, 
which may not be fully powered for nor be targeted at in randomized controlled trials. EMR data 
provides not only sufficient sample sizes but also extensive patient features recorded over time that 
allows robust and efficient inference. 

 Use of large scale administrative EMR data for drug safety research comes with challenges. A key 
challenge is the need to control for a large number of confounders, when drug adverse events are often 
rare. Regression adjustment of many confounders for rare outcomes may have model fitting issues. In 
contrast, the exposure is usually sufficient, and thus the probability of being exposed, i.e. the propensity 
score, can be predicted by the rich patient information. In such a situation, regression adjustment of the 
propensity score, a one-dimensional summary score known to be sufficient for balancing the exposure 
and control groups (Rosenbaum & Rubin 1983)(6), is advantageous. 

In a regression model that estimates exposure effect controlling for propensity score, the adjusted 
coefficient of the exposure has a conditional interpretation, i.e., a comparison of the risks among 
restricted group of homogeneous patients having the same characteristics. In drug safety research, we 
are often more interested in a marginal effect and care about generalizability to the full population, 
which is a combination of the exposed and unexposed groups. Such an effect is a comparison of risks 
estimated using the full population containing heterogeneous patients.  

To make population-level comparison, a common strategy used in epidemiology literature is direct 
standardization or direct adjustment. It applies stratum-specific rates observed in the exposed and 
unexposed groups to the full population in order to obtain the number of events expected in the full 
population under exposure and control, as well as estimate the population-level risks. Through this 
approach, one is able to control for a confounder while targeting a population-level comparison. 

One drawback of direct standardization is that it applies to one single confounder. Regression allows us 
to control for multiple confounders that are either continuous or categorical. To make population-level 
comparison from a regression model, it has been proposed to take the empirical averages of the pair of 
predicted risks under exposure and unexposed of each subject. Such a procedure is called 
standardization,(29) but is also called G-computation,(9, 10) partial means,(19) marginal integration,(18, 
20) full imputation,(17, 32) or marginalization(13, 25) in the literature. 

From the above discussion, we see that adjustment of propensity score in a regression model followed 
by standardization to get back to the full population level is tailored to our particular question of 
interest in the specific post-marketing drug safety surveillance setting.  

It has been used in previous literature in the past decade. Austin et al. (2007)(30) and Austin (2007)(31) 
compared propensity score methods and concluded that regression adjustment on the propensity score 
can result in biased exposure effect. However, one limitation of their papers was that the propensity 
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score was adjusted as a linear term on the probability scale, which may not capture the relationship 
between the outcome and the propensity. Thus, the biased exposure effect that was observed could be 
due to model misspecification rather than validity of propensity score adjustment. In addition, they took 
the regression coefficient for the treatment as the estimated “marginal” odds ratio (hazard ratio), which 
is in fact a conditional effect that adjusted for the propensity score. In general, we need both flexible 
methods for regression adjustment of propensity score, and comprehensive and valid simulation study 
to compare causal inference methods for binary outcomes. 

In this paper, we propose adjustment of B-splines of the propensity score, which corrects for the bias 
from linear adjustment. We focus on binary outcomes, and use standardization to estimate the 
marginal, population-level mean of the potential outcomes. With the estimated mean outcomes (mean 
risks), one can obtain parameters of interest that have causal interpretation, such as risk difference, risk 
ratio, and odds ratio. Section IX.C.2 provides brief background in causal inference and introduces 
notation. In Section IX.C.3 we introduce the regression adjustment on propensity score method in detail 
and provide an empirical estimator of the variance. Section IX.C.4 overviews existing causal inference 
propensity score methods which estimate the exposure effect targeting a certain population. In Section 
IX.C.5, we conduct simulation study to compare the flexible regression adjustment of propensity score 
with existing causal inference methods. We provide discussion and future work in Section Section IX.C.6. 

2. Background in Causal Inference 

a. The Potential Outcomes Framework 

Causation is inferred by any observed difference between the mean outcomes under exposure and 
control holding everything else the same. Accordingly, for each subject i, we define a pair of estimands 
(Yi(1),Yi(0)) as the outcomes that would be observed under exposure and control, called the potential 
outcomes. Denote the binary exposure as Xi, i = 1,…, n for subject i, taking on value 1 (exposed) or 0 
(unexposed). For each subject, only one of the potential outcomes is observed, i.e., the observed 
outcome Y = Y(1) if exposed (X = 1) with Y(0) missing, and Y = Y(0) if unexposed (X = 0) with Y(1) 
missing. 

b. The Strongly Ignorable Treatment Assignment Assumption 

The gold standard for estimating a causal effect is to conduct a randomized controlled experiment, in 
which the exposed and unexposed groups are balanced. In particular, the mean of observed outcome in 
the exposed group, E[Y|X = 1], will be equal to the mean of potential outcome under exposure in the 
entire population, E[Y(1)]. Thus, one can directly estimate the population average using the observed 
portion. 

In observational studies, however, differences in the outcomes between the two arms could be due to 
both pre-existing systematic differences and the drug effect. In the presence of confounding effects in 
observational studies, Rosenbaum and Rubin (1983)(6) proposed the strongly ignorable exposure 

assignment assumption, which is (Y(1),Y(0)) ⊥ X|𝐙, where 𝒁 denotes the baseline covariates. It states 
that treatment assignment is independent of the potential outcomes conditional on the observed 
baseline covariates. It allows one to estimate the within-strata average of potential outcomes using the 
observed portion, as if one conducted randomization within each stratum. That is, within a stratum of 𝒁, 
we have that exposed and unexposed groups are balanced, and thus the observed portion is 
representative of the entire stratum. 
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c. The Propensity Score 

The propensity score is the probability of being exposed given the subject's characteristics, i.e. S =
P[Z = 1|X] (Rosenbaum & Rubin 1983(6)). It has two important roles. First, it is a summary score that 
reduces the dimension: it summarizes a vector of the baseline covariates according to how predictive 
they are for measuring exposure-proneness, into a scalar. Second, it is a balancing score: conditional on 
the propensity score, the baseline covariates are similar between exposure and control groups.  In 

practice it is often estimated assuming a logistic regression model and therefore 𝑆̂𝑖 = (1+ exp(γ̂𝐙𝒊))
−1  

d. Causal Inference in Observation Study 

Causal inference is a comparison of the population-level average of the potential outcomes. The most 
common form of comparison is the mean difference, i.e., the causal exposure effect is measured as the 
average treatment effect, ATE=E[Y(1)]− E[Y(0)], or the average treatment effect on the treated, 
ATT=E[Y(1)|X = 1]− E[Y(0)|X = 1]. 

With estimating the population average of potential outcomes as the ultimate goal, causal inference 
methods either provide a balanced population that mimics one from a randomized experiment, or 
impute the unobserved potential outcomes. A review of causal inference methods using the propensity 
score will be provided in Section IX.C.4. 

3. Standardization Using Flexible Propensity Score Regression 

In this section we propose a method that flexibly adjusts for confounding using a propensity score, but 
then is able to standardize to any marginal estimand of interest. This is similar to standardization with 
direct adjustment for confounders(9, 10) that will be discussed in Section IX.C.4 except that we have 
further incorporated a propensity scores flexibly in the model to reduce the dimensionality of the 
confounder adjustment while attempting to minimize model assumptions. We further have derived 
variance estimates that incorporate the variability due to the estimation of the propensity score.  

a.  Generalized Partially Linear Model 

We propose a generalized partially linear outcome model as follows, 

g(E[Y𝑖|𝑋𝑖 , Ŝ𝑖]) = α(Ŝ𝑖) + β𝑋𝑖 , 

where Ŝ = P̂[X|𝐙] is the estimated propensity score, α(∙) is an unknown and potentially nonlinear 
function that adjusts for confounding effects, β is the conditional exposure effect, and g(∙) is a link 
function. For binary outcomes g(∙) is often the logit link function and the propensity score is also 
estimated using a logistic regression model.  

To estimate the nonlinear function α(S), we apply a nonparametric regression technique, the 
polynomial spline regression.(5, 14) A spline is a piece-wise polynomial function that is smooth at the 
joint of each piece, called the knot. Any spline function on a given set of knots can be expressed as a 
linear combination of B-splines. Thus, we generate a set of B-spline basis functions, 𝐁(S) =
[B1(S),…, BK(S)], then fit the outcome on the basis functions and the exposure indicator. The potential 
outcomes under being exposed and unexposed for each subject i are thus predicted as 

𝐸̂[𝑌𝑖(1)|𝑆𝑖 ]= 𝑔−1(𝛽̂ +𝑩(𝑆̂𝑖)𝜶̂) 

𝐸̂[𝑌𝑖(0)|𝑆𝑖 ]= 𝑔−1(𝑩(𝑆̂𝑖)𝜶̂) 
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The to obtain a population average effect we use a standardization/G-Computation approach to obtain 
the following population-level average of the potential outcomes, 

𝑝̂1 = 𝐸̂[𝑌(1)]=
1

𝑛
∑𝑔−1(𝛽̂ +𝑩(𝑆̂𝑖)𝜶̂)

𝑛

𝑖=1

 

𝑝̂0 =  𝐸̂[𝑌(0)] =
1

𝑛
∑𝑔−1(𝑩(𝑆̂𝑖)𝜶̂)

𝑛

𝑖=1

 

which will be used for causal comparison. For binary outcomes, we plug in such estimated mean risk to 
estimate the parameter of interest such as the risk difference, the relative risk, or the odds ratio. 

b. Variance Estimation Incorporating Uncertainty of the Propensity Score 

To derive the variance of this flexible standardized model there is a need to incorporate the variability of 
the propensity score, the variability due to flexibly regressing the propensity score onto the outcome, 
and variability due to the standardization step to the population-level estimand. Hahn & Ridder 
(2013)(38) studied inference for a general three-step estimator and derived an influence function that 
incorporates the uncertainty in each of the steps. We follow their proposed procedure and derived the 
following variance estimates.  

The variance estimator for risk difference (RD) is  

1

𝑛2
∑ (𝐼𝐹̂1𝑖 − 𝐼𝐹̂0𝑖)

2
𝑛
𝑖=1 , 

for log risk ratio (RR) is 

 
1

𝑛2
∑ (

𝐼𝐹̂1𝑖

𝑝̂1
−
𝐼𝐹̂0𝑖

𝑝̂0
)
2

𝑛
𝑖=1 , 

and for log odds ratio (OR) is 

 
1

𝑛2
∑ (

𝐼𝐹̂1𝑖

𝑝̂1(1−𝑝̂1)
−

𝐼𝐹̂0𝑖

𝑝̂0(1−𝑝̂0)
)
2

𝑛
𝑖=1 , 

where 𝐼𝐹̂1𝑖 = 𝐸̂[𝑌𝑖(1)|𝒁𝑖] − 𝑝̂1 +
𝑋𝑖

𝑆𝑖
(𝑌𝑖− 𝐸̂[𝑌𝑖(1)|𝒁𝑖]) and 𝐼𝐹̂0𝑖 = 𝐸̂[𝑌𝑖(0)|𝒁𝑖] − 𝑝̂0 +

1−𝑋𝑖

1−𝑆𝑖
(𝑌𝑖−

𝐸̂[𝑌𝑖(0)|𝒁𝑖 ]). 

See Appendix for details of the derived variance estimation. When the outcome is rare, it could be 
difficult to directly estimate the variance and therefore bootstrap-based variance estimators may be 
needed. We will compare the performance of the empirical estimator and the bootstrapped variance 
estimator via simulation in Section IX.C.5. 

4. Propensity Score Methods for Binary Outcomes 

In this section, we review existing methods for estimating a population-level mean risk, which will be 
plugged in to estimate a population-level risk difference, risk ratio, or odds ratio. Recall that in Section 
IX.C.2.d we briefly introduced the main ideas in causal inference methods. As will be discussed in detail 
below, propensity score matching and propensity score stratification are two methods that mimics 
randomization to achieve balance in the two arms and thus make fair comparison; the inverse 
probability of treatment weighting reweights to a pseudo-population that is also balanced; the 
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regression based standardization method and the doubly robust estimator predicts the missing potential 
outcomes to make comparison using mean estimated from all subjects in the population. 

a. Propensity Score Matching 

The propensity score matching method mimics the randomized study by selecting a subpopulation, 
which includes matched sets of exposed and unexposed subjects sharing similar propensity scores. One 
common application of matching is to match each exposed participant to M unexposed participants. 
Then one would use regression to estimate the marginal causal estimand of interest. Specifically, if 
interest is in the marginal odds ratio one would fit a logistic regression model using data from the 
matched subpopulation and only include the indicator of exposed or unexposed in the model.  Note that 
the matched subpopulation contains subjects with characteristics similar to the exposed arm. Thus, the 
estimated causal effect is in fact the average treatment effect on the treated (ATT).  

In practice, applying propensity score matching involves several decisions to make. First of all, one needs 
to decide the value of M, as well as a caliper that defines the tolerance of the difference in propensity 
scores for a matched pair. It was discussed in simulation studies that increasing M tended to increase 
the bias but decrease the sampling variability of the estimate (Austin 2010)(34). The caliper can be 
decided in practice by checking the covariate balance as well as number of subjects in the matched 
dataset.  

Second, one needs to choose a sampling method, i.e., with or without replacement. For matching 
without replacement, each unexposed subjected can be used at most once. For matching with 
replacement, a pseudo-population that is closest to the exposed population is generated. However, it is 
hard to interpret the result, and the possibility of including duplicated subjects needs to be accounted 
for when estimating the variance.  

Third, matching has been implemented in several packages written in different statistical programming 
languages including R, SAS, and STATA. Each package has its own choice of algorithms and may 
therefore give different results. It is important to understand which algorithm is being used. Since the 
matching procedure does not involve the outcome, one could try multiple methods and select the best 
matched dataset according to covariate balance and size of the matched sample. 

Last, for estimating the odds ratio, one could use the conditional logistic regression which fits the 
regression model acknowledging the fact that matched sets include similar subjects. However, the 
quantity being estimated becomes a conditional odds ratio, conditional on the matched set of similar 
subjects. The conditional logistic regression is implemented by applying the Cox proportional hazard 
model with tied survival times for subjects within the same matched set. There are different methods 
for dealing with tied survival times, depending on whether the likelihood function written in exact form 
or approximated form. The choice of methods affects the computation time and more importantly, the 
bias of the estimate, so sensitivity analysis on choice of methods for ties is recommended.  

b. Stratification on Propensity Score 

Propensity Score stratification, also referred to as subclassification, cuts the propensity score into strata 
according to its quantile, and then divides the population into equal-size subclasses of subjects having 
propensity score within the same strata (Rosenbaum & Rubin 1984)(7). Extreme subclasses with zero 
(un)exposed subjects will be non-informative and discarded, which is analogous to unmatched subjects 
in propensity score matching. Compared to matching, the stratification on propensity score also mimics 
randomization by achieving balance within subclasses. However, it includes more observations than 
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matching which reduces variance at the potential price of increased bias. The trade-off between bias 
and variance is controlled by the number of strata. An extreme case, for example, when the number of 
strata is equal to the number of matched pairs, some subclasses will have zero (un)exposed subjects and 
be discarded, and stratification and matching may result in similar estimates and datasets. 

The common estimator following stratification is a weighted average of the quintile-specific odds ratios. 
For example, one weighting scheme leads to the Mantel-Haenszel estimator (Mantel & Haenszel 
1959)(1). Adjusting for indicator of strata using a (conditional) logistic regression is another way to apply 
stratification for control of confounding. However, as mentioned in Section IX.C.4.a, conditional logistic 
regression will estimate a conditional odds ratio. Marginalization methods following regression will be 
introduced below in Section IX.C.4.d, which allows one to estimate a marginal causal odds ratio from a 
regression model. 

c. Inverse Probability of Treatment Weighting (IPTW and Augmented IPTW) 

Another way to achieve balance in the population is to reweight every subject to create a pseudo-
population in which every (un)exposed pseudo-subject has equal possibility of being (un)exposed, which 
is representative to one from a randomized study. This is called the inverse probability of exposure 

weighting (IPTW).(26) A commonly used weight is the inverse of the propensity score, that is, to use 
1

Si
 if 

subject i is exposed and 
1

1−Si
 if subject i is unexposed. The idea behind using inverse probability is: for 

patients with a high S, they are more likely to be observed in the exposure group and more rarely seen 

in the control group, so using 
1

S
 in the exposure group and 

1

1−S
 in the control group will make the number 

of patients with the same value of S to be similar in the two groups. In other words, to achieve balanced 
groups of patients. 

The idea of weighting is not new. In fact it has been widely used to achieve an estimator that is 
generalizable to a target population, especially in survey research.(21) To estimate the risk difference, 
one can take the weighted sum of the observed outcomes. To estimate the odds ratio or risk ratio, one 
can use a weighted generalized linear model to fit the outcome on exposure. Note that since the 
pseudo-population is balanced in terms of propensity score, and the only covariate in the model is the 
exposure, the estimated coefficient of the exposure is a marginal, causal effect.  

A well-known problem with IPTW is the instability from inverting the estimated propensity score. 
Stabilized weights have been proposed (Robins et al. 2000)(26). A trimming approach, which truncates 
weight using either a pre-specified threshold or a quantile is also widely used in practice (Potter 1990, 
Potter 1993)(12, 16) and we will implement this in our simulation study in Section IX.C.5. 

Simple IPTW requires that the propensity score must be correctly specified. To relax this assumption the 
Augmented IPTW (AIPTW) approach was proposed that developed a doubly robust estimator building 
on both the propensity score model and the outcome regression model (Robins et al. 1994, Bang & 
Robins 2005)(26, 27). It is doubly robust because it only requires either the propensity score model or 
the outcome model to be correctly specified. In addition, it was shown to be efficient among a class of 
semiparametric estimators, because it takes the efficient influence function as the estimating equation 
(Hahn 1998)(24). However, since the estimation of the outcome model is required there may be issues 
in the rare event setting relative to other methods. In the simulation approach we will only show the 
Augmented IPTW method since actual method performance between IPTW and Augmented IPTW was 
very comparable except in the case when the propensity score model was misspecified and Augmented 
IPTW performed better as expected. 
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d. Standardization with Direct Covariate Regression 

As outlined in Section IX.C.3 standardization after regression is a viable approach to estimate marginal 
estimands. We proposed the incorporation of a flexible propensity score model in the outcome 
regression model. However, the standard approach is to instead use a simpler two-step process which is 
also known as G-computation (Robins 1986, Robins 1987).(9, 10) The first step is to build an outcome 
regression model with both exposure and all confounders in the model  

g(E[Y𝑖|𝑋𝑖 , 𝒁𝑖]) = β𝑋𝑖 +𝜶𝒁𝑖. 

Then standardization (Step 2) is done by simply taking the average of the predicted potential outcomes 
for all subjects in the population as outlined in Section IX.C.3. Then the estimated causal effect is a 
comparison of the marginal, population-level means, obtained by plugging in the marginalized mean 
into risk difference, risk ratio, or odds ratio.  

Note that this is similar to the method proposed in Section IX.C.3 except there is no estimation of the 
propensity score and the confounders are directly regressed on the outcome. Therefore, application of 
this method in the rare event setting may be problematic which will evaluate in the simulation study.  

5. Simulation Study 

We performed a simulation study to investigate the performance of the different methods outlined in 
Section IX.C.3 and 4 to estimate a marginal OR. We chose to estimate a marginal OR since it is the most 
common estimand of interest in observational cohort studies. Our simulation study will mimic real data 
from a study comparing the effect of angiotensin-converting enzyme Inhibitors (ACEI) and beta blocker 
(BB) on incidence of angioedema in 30 days from the FDA Sentinel Initiative.  

The marginal OR estimators to be compared are the following: (1) 1-1 matching on the propensity score 
without replacement; (2) Augmented IPTW, with parametric models for exposure and outcome, both 
adjusting for all covariates with trimmed propensity score using 5% tail as the threshold; (3) 
Standardization with direct covariate regression; (4) Standardization with regression on linear 
propensity score adjustment; (5) Standardization with regression on propensity score deciles; and (6) 
Standardization with flexible regression of the propensity score using B-spline basis functions (here we 
used cubic spline with one inner knot). We chose the first 3 methods since they are standard approaches 
used for estimation of a marginal OR. We chose approach 4 because this method has been shown to be 
biased in other simulation studies and therefore we were interested to assess for our simulation 
scenario if these findings still held. We chose approach 5 with standardization with regression on the 
propensity score deciles to be able to compare if the more flexible propensity score adjustment 
(approach 6) improved over this method.  

Performance of approaches was assessed in terms of mean bias on log OR scale, type I error, and power. 
For each scenario assessed we used 8000 simulated datasets. 

a. Simulation Setting 

We generate a population of 100,000 subjects mimicking data from the ACEI and BB example. 
Specifically, there are nine binary clinically relevant covariates (NSAIDS, aspirin, ORAL-CS (optimizing 
recovery after laparoscopic colon surgery), allergic reaction, diabetes, heart disease, Ischemic HD, 
inpatient hospitalization, and gender) and one categorical variable which is age category with four 
levels, corresponding to three dummy variables (binary indicators).  See Table C 1Error! Reference 
source not found. for prevalence of each confounder.  
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Table C 1. Prevalence of each confounder and relationship between exposure (ACEI and BB) and 
confounders for different simulation scenarios (propensity score model) 

 
Propensity Score Model Odds Ratios 

  % Observed 
Propensity 

 Observed+ 
Age*Diabetes 

Interaction 

Stronger 
Propensity 

 Stronger+ 
Age*Diabetes 

Interaction 

Heart Disease 0.3 0.55 0.55 0.41 0.41 

Aspirin 1.4 0.54 0.54 0.40 0.40 

Ischemic HD 6.3 0.23 0.23 0.11 0.11 

OptRec Colon Surg 8.0 0.85 0.85 0.78 0.78 

Allergic Reaction 8.4 0.33 0.33 0.19 0.19 

Inpatient Hosp. 10.5 0.86 0.86 0.80 0.80 

NSAIDS 12.2 0.95 0.95 0.93 0.93 

Diabetes 15.6 3.00 -- 5.20 -- 

Female 47.3 0.51 0.51 0.36 0.36 

Age(Ref: 18-44) 
     

 45-54 32.5 1.49 -- 1.82 -- 

 55-64 27.6 1.37 -- 1.60 -- 

 65-99 7.4 1.08 -- 1.12 -- 

Age*Diabetes (Ref: 18-44 and Not Diabetic) 

 45-54 & Not Diabetic 27.4 
 

1.49 
 

1.82 

 55-64 & Not Diabetic 23.3 
 

1.37 
 

1.60 

 65-99 & Not Diabetic 6.2 
 

1.08 
 

1.12 

 18-44 & Diabetic 5.1 
 

3.00 
 

5.20 

 45-54 & Diabetic 5.1 
 

7.37 
 

15.58 

 55-64 & Diabetic 4.3 
 

6.78 
 

13.74 

 65-99 & Diabetic 1.2   5.34   9.62 

To simulate the ACEI and angioedema dataset, we generated 

(1) Categorical covariates 𝒁 that have the same mean and pairwise covariance as what are observed 
from the real data; 

(2) Binary exposure 𝑋 (ACEI = 1 and BB = 0) generated based on a logistic regression on the covariates 
(the propensity score model), using the coefficients observed from fitting the real data. For all cases, we 
hold the prevalence the same as the real data (65% ACEI).  (Table C 1Error! Reference source not found. 
Observed Propensity) 

(3) A pair of binary potential outcomes (Y(1),Y(0)) (angioedema within 30 days under exposure and 
control for the same subject) based on a logistic regression on the exposure and covariates (the 
outcome regression model), using the coefficients observed from fitting the real data. The observed 
outcome is thus Y = XY(1)+ (1− X)Y(0). For all cases, we hold the event rate in the control group (BB 
group) the same as the real data, which is equal to 0.05%. (Table C 2 Observed Outcome Regression 
Model).  
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Table C 2. Relationship between outcomes given the exposure (ACEI and BB) and confounders 
 

Outcome Model (OR) 
  Observed 

Model 
 Observed+ 

Age*Diabetes 
Interaction 

Confounders     

Heart Disease 1.13 1.13 

Aspirin 1.38 1.38 

Ischemic HD 1.07 1.07 

OptRec Colon Surg 1.58 1.58 

Allergic Reaction 1.54 1.54 

Inpatient Hosp. 2.18 2.18 

NSAIDS 0.93 0.93 

Diabetes 0.73 -- 

Female 1.63 1.63 

Age(Ref: 18-44) 
  

 45-54 1.08 -- 

 55-64 0.84 -- 

 65-99 0.92 -- 

Age*Diabetes (Ref: 18-44 and Not Diabetic) 

 45-54 & Not Diabetic 
 

1.08 

 55-64 & Not Diabetic 
 

0.84 

 65-99 & Not Diabetic 
 

0.92 

 18-44 & Diabetic 
 

0.73 

 45-54 & Diabetic 
 

0.48 

 55-64 & Diabetic 
 

0.37 

 65-99 & Diabetic 
 

0.41 

Exposure 
  

 ACEI 2.51 2.51 

In addition, we increase the strength of confounding by scaling up the coefficient in the propensity score 
model (multiply coefficients on the logOR scale by 1.5), while still holding the exposure prevalence and 
the baseline event rate the same (Table C 1). We also allow the propensity score model or the outcome 
regression model that generates the potential outcomes to include interaction terms between age and 
diabetes, to look at cases when the methods misspecify one of the models by missing the interaction 
(Table C 1 and Table C 2 Adding Interactions). Note that the outcome regression model on the 
propensity score hardly yields a function of covariates that matches the underlying data-generating 
model. So (mis)specification refers to methods that use regression models that actually fit on the 
covariates. For example, the regression on propensity score can use a misspecified propensity score 
model, which will make the propensity score be estimated with error and lose the balancing property to 
some extent; the augmented IPTW method can use misspecified propensity score model and/or 
misspecified outcome regression model. 
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 We emphasize that the event rate is 0.05%, which yields about 50 angioedema incidences among the 
100,000 subjects. We have twelve binary indicators including nine binary variables and three indicators 
for age category. When the exposure rate is 65%, for matching methods, there is going to be less control 
subjects than exposed subjects. We have also simulated the case when the exposure rare is 20%, which 
is more commonly seen, although it might result in a smaller matched dataset.  

b. Results 

Table C 3 shows the mean bias on the log(OR) scale, type I error, and power when the correct 
propensity score model and outcome regression model are specified. For matching methods, we 
calculate the bias assuming the ATT estimate.  

In terms of bias, standardization with propensity score B-Splines performed similar to standardization 
with covariate adjustment. In settings when there is strong confounding effect with an exposure rate of 
65%, or when the exposure rate is 20% under both moderate and strong confounding, standardization 
with propensity score B-Splines outperformed traditional methods, and also corrected the bias from 
adjusting for the propensity score as a linear term. However, when there is moderate confounding 
effect with an exposure rate of 65%, we observe similar biases between propensity score B-Splines and 
propensity score linear adjustment, and the augmented IPTW performs slightly better. The augmented 
IPTW had substantial increase of bias when the exposure rate is 20%, which is further from 50% 
compared to 65%. This is an evidence of sensitivity to inverting a propensity score that is closer to zero.  

All methods had similar type I error and power except that matching had lower power. In particular, 
when the exposure rate is 20%, matching had much lower power, which can be due to a smaller size of 
the matched sample (at most 40% of full population matched). The valid type I error and high power 
showed that the direct estimation of variance is a fast and valid approach for inference. 
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Table C 3. Bias and Power in estimating the marginal OR by method ranging the strength of 
confounding and relationship between exposure and outcome 

 
Original Confounding Strong Confounding  

log(OR)=0 log(OR) = 0.92 log(OR)=0 log(OR) = 0.94 

Methods Bias* Type I 
error 

Bias Power Bias Type I 
error 

Bias Power 

Exposure rate = 65% 
        

Matching -0.034 0.018 -0.023 0.894 0.012 0.023 0.027 0.896 

Augmented IPTW -0.010 0.017 -0.004 0.931 0.017 0.030 0.029 0.890 

Standardization 
        

Covariates -0.012 0.016 -0.010 0.938 0.015 0.024 0.019 0.884 

PS Linearly -0.013 0.018 0.007 0.942 0.014 0.029 0.044 0.888 

PS Deciles -0.030 0.016 -0.028 0.934 -0.005 0.024 -0.003 0.876 

PS B-Splines -0.013 0.016 -0.009 0.938 0.013 0.025 0.019 0.884 
         

Exposure rate = 20% 
        

Matching -0.060 0.030 -0.061 0.548 -0.023 0.030 -0.010 0.535 

Augmented IPTW -0.124 0.047 -0.046 0.740 -0.167 0.074 -0.069 0.674 

Standardization 
        

Covariates -0.082 0.044 -0.027 0.753 -0.075 0.064 -0.022 0.722 

PS Linearly -0.082 0.043 -0.037 0.743 -0.076 0.064 -0.049 0.701 

PS Deciles -0.095 0.043 -0.040 0.741 -0.094 0.065 -0.038 0.709 

PS B-Splines -0.083 0.043 -0.028 0.751 -0.078 0.069 -0.025 0.722 

*mean bias on the log OR scale 

Table C 4 shows the mean bias on the log(OR) scale, type I error, and power when the propensity score 
model is misspecified by missing the interaction term. Table C 5 shows the mean bias on the log(OR) 
scale, type I error, and power when the outcome regression model is misspecified by missing the 
interaction term.  

In both tables, we observed similar results in terms of bias as Table C 3, although misspecification of 
outcome regression model seemed to have more impact on the performance of the methods. The 
biases of standardization methods using either covariate adjustment or propensity score adjustment 
were slightly higher due to misspecification of models. The augmented IPTW method had less increase 
or even decrease in bias under model misspecifications, but the performance was unstable, due to large 
number of covariates and rareness of the outcome. Adjusting for propensity score deciles also had an 
unstable performance across all tables, having smaller bias under strong confounding and 65% exposure 
rate, but larger bias otherwise. The performance of adjusting for propensity score strata indicators or 
propensity score B-spines is sensitive to the degree of freedom determined by number of strata or 
number of B-spline basis functions. In practice, we suggest using cross-validation to select a valid 
number. 
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Type I error and power were similar comparing Table C 4 and Table C 3. However, in Table C 5 there was 
notable power loss under strong confounding. Again we see that matching had lower power than all 
other methods due to insufficient sample size. 

Table C 4. Bias in estimating marginal OR when true propensity score model has interactions 
 

Original Confounding Strong Confounding  
log(OR)=0 log(OR) = 0.92 log(OR)=0 log(OR) = 0.94 

Methods Bias* Type I 
error 

Bias Power Bias Type I 
error 

Bias Power 

Exposure rate = 65% 
        

Matching -0.037 0.018 -0.026 0.900 0.017 0.026 0.030 0.891 

Augmented IPTW -0.014 0.018 -0.007 0.935 0.017 0.028 0.026 0.889 

Standardization 
        

Covariates -0.016 0.014 -0.012 0.946 0.016 0.026 0.018 0.881 

PS Linearly -0.017 0.016 0.004 0.948 0.016 0.031 0.042 0.885 

PS Deciles -0.031 0.015 -0.029 0.940 -0.003 0.024 -0.003 0.872 

PS B-Splines -0.016 0.015 -0.012 0.945 0.015 0.027 0.018 0.879          

Exposure rate = 20% 
        

Matching -0.062 0.029 -0.062 0.548 -0.029 0.029 -0.018 0.528 

Augmented IPTW -0.116 0.049 -0.042 0.745 -0.172 0.076 -0.069 0.668 

Standardization 
        

Covariates -0.083 0.043 -0.027 0.754 -0.077 0.067 -0.027 0.716 

PS Linearly -0.083 0.042 -0.037 0.746 -0.078 0.065 -0.054 0.691 

PS Deciles -0.095 0.041 -0.039 0.742 -0.096 0.066 -0.043 0.702 

PS B-Splines -0.084 0.043 -0.028 0.752 -0.080 0.070 -0.029 0.716 

*mean bias on the log OR scale 
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Table C 5. Bias in estimating marginal OR when true outcome model has interactions 
 

Original Confounding Strong Confounding  
log(OR)=0 log(OR) = 0.92 log(OR)=0 log(OR) = 0.94 

Methods Bias* Type I 
error 

Bias Power Bias Type I 
error 

Bias Power 

Exposure rate = 65% 
        

Matching -0.047 0.017 -0.035 0.888 -0.156 0.026 -0.140 0.701 

Augmented IPTW -0.018 0.016 -0.011 0.925 -0.079 0.036 -0.070 0.747 

Standardization 
        

Covariates -0.020 0.015 -0.017 0.935 -0.081 0.033 -0.080 0.735 

PS Linearly -0.021 0.017 0.003 0.939 -0.087 0.041 -0.057 0.751 

PS Deciles -0.034 0.016 -0.031 0.932 -0.098 0.037 -0.097 0.720 

PS B-Splines -0.021 0.015 -0.016 0.935 -0.084 0.036 -0.080 0.736          

Exposure rate = 20% 
        

Matching -0.065 0.031 -0.065 0.543 -0.175 0.028 -0.154 0.340 

Augmented IPTW -0.126 0.047 -0.047 0.735 -0.264 0.105 -0.108 0.461 

Standardization 
        

Covariates -0.089 0.042 -0.030 0.746 -0.155 0.086 -0.054 0.531 

PS Linearly -0.090 0.042 -0.038 0.735 -0.152 0.086 -0.073 0.513 

PS Deciles -0.101 0.041 -0.041 0.733 -0.173 0.089 -0.069 0.517 

PS B-Splines -0.091 0.043 -0.031 0.744 -0.156 0.089 -0.056 0.537 

*mean bias on the log OR scale 
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6. Discussion 

In this paper, we have shown that there is great potential in using regression adjustment of the 
propensity score to estimate causal effects for rare binary outcomes, which fits in the postmarket drug 
surveillance research. We pointed out that although the propensity score is sufficient in balancing the 
confounders between exposure groups, regression adjustment directly using the propensity score as a 
covariate can result in bias, whereas a fast and simple correction of the bias comes from fitting flexible 
spline function of the propensity score.  

Simulation study showed that flexible adjustment of propensity score in an outcome regression model 
resulted in less bias without loss of efficiency, and can outperform traditional methods when the 
propensity score model is correctly specified. When the propensity score was misspecified, regression 
adjustment of propensity score can have larger bias, but still performs comparably  

to most methods. The augmented IPTW method performed better in such a situation, but might suffer 
from convergence problem with larger number of covariates due to rareness of the outcome. When the 
outcome regression model was misspecified, the augmented IPTW still had less bias, but sometimes 
very larger variance. 

With non-rare exposure and a large cohort, if one is confident in doing a good job in fitting the 
propensity score model, we suggest fitting the propensity score model as a first step, and then use 
flexible regression adjustment of propensity score instead of using traditional propensity score methods 
such as matching and augmented IPTW. Although the augmented IPTW estimator can outperform all 
methods under strong confounding effect, in general, it requires fitting the outcome regression model 
and inversion of the propensity score, which makes it less stable. In addition, we also suggest fitting on 
propensity score deciles as a sensitivity analysis as it fits another nonlinear function of the propensity 
score and can perform well when the confounding effect is strong. 
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