

Public Sentinel Training at FDA: Day 2 of the Tenth Annual Sentinel Initiative Public Workshop

February 8, 2018

Housekeeping

- Wi-fi information
 - Network: FDA Public
 - Passcode: publicaccess
- Lunch details
 - Please pre-order at the food service kiosk in the foyer
 - Keep your receipt
 - Pick up your selection during the lunch break

Today's Schedule

- 9:00 9:10 Welcome and Introduction (Robert Ball and Richard Platt)
- 9:10 9:20 Knowledge Check (Tyler Coyle)
- 9:20 9:30 Review of Sentinel Capabilities (Judy Maro)
- 9:30 10:20 Propensity Score Analysis Tool (Jane Huang)
- **10:20 10:30** Q&A
- 10:30 10:45 Break
- 10:45 11:30 Self-Controlled Risk Interval Tool (Justin Bohn)
- **11:30 11:40** Q&A
- 11:40 12:30 Lunch
- 12:30 1:30 TreeScan (Judy Maro)
- 1:30 1:40 Q&A
- **1:40 1:50** Knowledge Check (Tyler Coyle)
- 1:50 2:00 Closing Remarks (Michael Nguyen)

Welcome and Introduction

Robert Ball, MD, MPH, ScM¹ Richard Platt, MD, MS²

Knowledge Check

Website: www.zeetings.com/sentinel

Access code: Sentinel

Review of Sentinel Capabilities

Judith C. Maro, PhD¹

Sentinel

Drugs

Vaccines, Blood & Biologics

Devices and Radiologic Health

Communications

FDA-Catalyst

Report Finder

Home >> Communications >> Sentinel Initiative Events

COMMUNICATIONS

- FDA Safety Communications
- Publications and Presentations
- Sentinel Initiative Events
- Report Finder

Sentinel Initiative Events

The following table provides information about both international professional conferences and meetings hosted on behalf of FDA concerning development of active medical product surveillance methods and systems in the Sentinel Initiative. The Annual Sentinel Initiative Public Workshop is hosted by the Duke-Margolis Center for Health Policy at Duke University.

Public Sentinel Training at FDA

07/10/2017

Recordings of the presentations are available via the following links:

Welcome, introduction, agenda, learning objectives

Introduction to the Sentinel Program and Sentinel Distributed Database (skip ahead to 11:35)

What Kind of Questions can the Sentinel Distributed Database Answer?

Tools to Answer Public Health Questions, Part 1

Tools to Answer Public Health Questions, Part 2

Recap

- What comprises the Sentinel Initiative
- Types of data available and patient populations captured in the Sentinel Infrastructure
- What the Sentinel Infrastructure can reliably capture
 - Guidance on the types of exposures, outcomes, and covariates that can be identified
- Present routine querying tools in the context of questions common to many product safety concerns

Sentinel Program Overview

Sentinel Initiative

Sentinel Infrastructure

Sentinel System

Routine queries and other activities that use pre-existing data

- PRISM
- BloodSCAN
- ARIA

FDA-Catalyst

Routine queries + interventions and interactions with members and/or providers

The Sentinel Eco-System

Lead - HPHC Institute

DEPARTMENT OF POPULATION MEDICINE

Data and scientific partners

SCHOOL OF PUBLIC HEALTH

Sentinel Distributed Network and Available Data Elements

Sentinel Utilizes Secondary Data

- Patient interaction with the U.S. healthcare system generates data
- Why is data collected?
 - Payment/billing
 - Document clinical care
 - Physician decision support
 - Recordkeeping
 - Registries
- Data provide rich source of information for patient safety evaluations

Numerous Data Elements are Available

Administrative

Enrollment Person ID Enrollment start & end dates Drug coverage Medical coverage Medical record availability

Demographic
Person ID
Birth date
Sex
ZIP code
Etc.

Dispensing		
Person ID		
Dispensing date		
National drug code (NDC)		
Days supply		
Amount dispensed		

Encounter		
Person ID		
Service date(s)		
Encounter ID		
Encounter type & provider		
Facility		
Etc.		

Diagnosis		
Person ID		
Service date(s)		
Encounter ID		
Encounter type & provider		
Diagnosis code & type		
Principal discharge diagnosis		

Procedure
Person ID
Service date(s)
Encounter ID
Encounter type & provider
Procedure code & type
Etc.

Clinica

Lab Result

Person ID Result and specimen

collection dates Test type, immediacy & location

Logical Observation Identifiers Names and Codes (LOINC®)

Test result & unit

Etc.

Vital Signs
Person ID
Measurement date and time
Height and weight
Diastolic & systolic BP

	_	-
Vital Signs		
Person ID		
asurement date and time		
Height and weight		
Diastolic & systolic BP		_
Tobacco use & type		
Etc.		

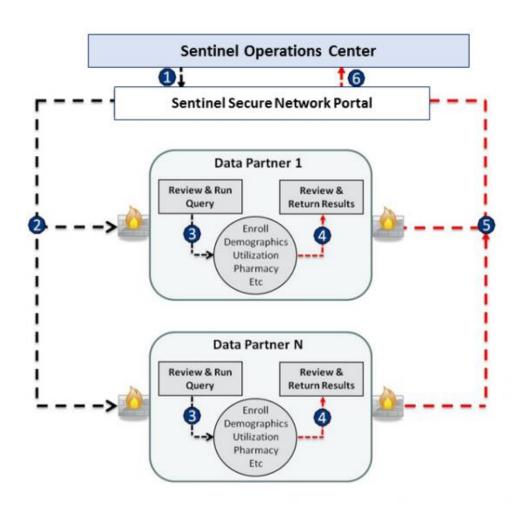
Registry			
Death	Cause of Death	State Vaccine	
Person ID	Person ID	Person ID	
Death date	Cause of death	Vaccination date	
Source	Source	Admission Type	
Confidence	Confidence	Vaccine code & type	
Etc.	Etc.	Provider	
		Etc.	

Inpatient

Inpatient Pharmacy	Inpatient Transfusion	
Person ID	Person ID	
Administration date and time	Administration start and end date and time	
Encounter ID	Encounter ID	
National Drug Code (NDC)	Transfusion administration ID	
Route	Transfusion product code	
Dose	Blood Type	
Etc.	Etc.	

Snapshot of Database Statistics

	Traditional Sentinel	Medicare Fee-for-Service	Total
Unique Enrolled Patient Identifiers	239 million	53.5 million	292.5 million
People Accruing New Data	44.6 million	22.3 million	66.9 million
Pharmacy Dispensings	6.6 billion	7.7 billion	14.3 billion
Unique Medical Encounters	7.8 billion	5.5 billion	13.3 billion
Members with <u>></u> 1 Laboratory Test Result	45.6 million	Laboratory data unavailable	45.6 million

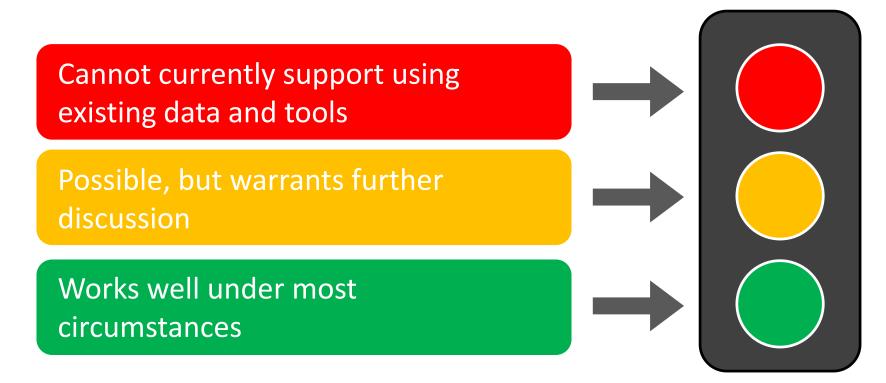


Sentinel Data Philosophy

- Data Partners maintain ownership of all uses of their data and have "opt out" privileges
- Minimum necessary data is transferred to Sentinel Operations Center (SOC)
 - Minimize use of de-identified patient-level data
- Data Partners do not transfer data to each other

Sentinel is a Distributed Data Network

- 1- FDA data request sent to Data Partners via FISMA-compliant secure network portal
- 2- Data Partners retrieve query
- 3- Data Partners review and run query against their local data behind their firewalls
- 4- Data Partners review results for accuracy and privacy compliance
- 5&6- Data Partners return results, stripped of direct identifiers, to SOC via secure portal



Sentinel Capabilities: Identifying Cohorts, Exposures, Outcomes and Covariates

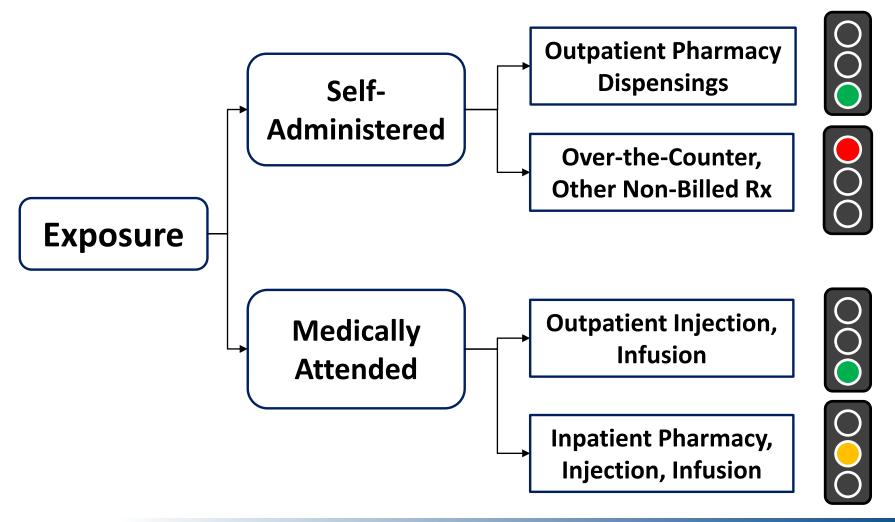
Framework for Discussion

- Stoplight provided as simple metric
- Describes Sentinel's current capabilities to support specific topics

Rules of Thumb: Cohort Definitions

Age reliably captured

Sex complete and reliably utilized



 Race/ethnicity available in some Data Partners, missingness and reliability remain a concern



Rule of Thumb: Exposures

Rules of Thumb: Outcomes

Rules of Thumb: Covariate Definitions

Medical history/comorbidities, treatment history

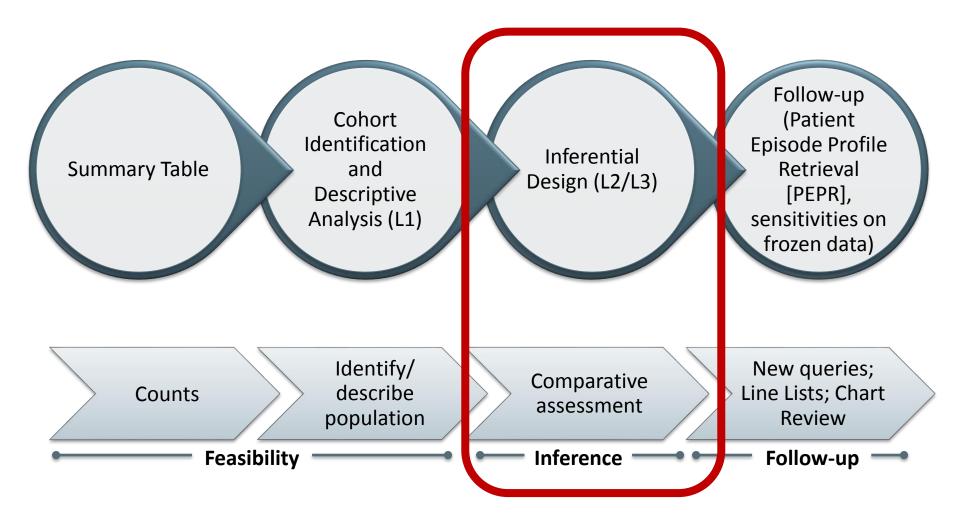
 Lifestyle factors are not processed as part of administrative claims and are not reliable

Clinical data: laboratory test results, vital signs

Takeaway Messages

- Most outpatient exposures are reliably captured
- Most acute onset outcomes are reliably captured, provided there are clear diagnostic criteria and code(s) that can distinguish the outcome
- Over-the-counter medications are not captured
- Inpatient treatment capture requires discussion
- Non-medically attended events are not captured

Sentinel Data Queries: Routine Querying Tools



How Are Routine Queries Implemented?

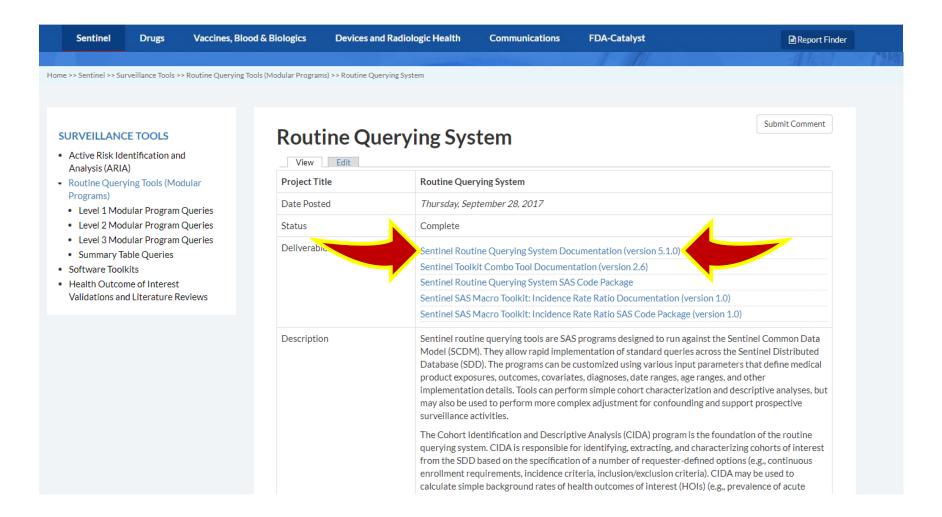
- Query "templates" target types of common questions
 - Example: Profile medical product exposure time "at risk"
- Parameterized at program execution
 - Example medical product exposure: ACE inhibitors
- Pre-tested and validated (no custom programming)
 - Significantly shortens response time
- Standard output

Typical Query Sequence

Questions?

Propensity Score Analysis Tool

Ting-Ying (Jane) Huang, PhD¹



SENTINEL MODULAR PROGRAMS

Querying Tools: Overview of Functionality and Technical

Documentation

PROPENSITY SCORE ANALYSIS (PSA) TOOL

A. OVERVIEW

The PSA tool performs effect estimation by comparing exposure propensity-score matched parallel new user cohorts. Propensity score estimation and matching are conducted within each Sentinel Data Partner site via distributed programming code; data are returned to the Sentinel Operations Center (SOC), aggregated, and used to calculate effect estimates.

Propensity scores may be estimated using requester-defined covariates and/or empirically identified covariates via a high dimensional propensity score (hdPS) approach. Patients in exposed and comparator cohorts are matched in 1:1 or variable 1:n (n<10) ratios within a requester-defined caliper.

As the PSA tool functions in a distributed database environment, propensity scores are estimated at each Data Partner site separately. Additionally, as the PSA tool is designed to support sequential analysis, patients are matched in each monitoring period and propensity scores are estimated for each monitoring period.

Agenda

- Active Risk Identification and Analysis (ARIA)
- Level 2 capabilities in ARIA
- Propensity score (PS) methods
- Case study: ACEI-angioedema
 - Identify treatment and comparator exposure cohorts
 - Extract covariate information
 - Estimate an exposure propensity score
 - Match treatment and comparator patients on PS, or
 - Stratify treatment and comparator patients by PS percentile
 - Generate effect estimates and create report

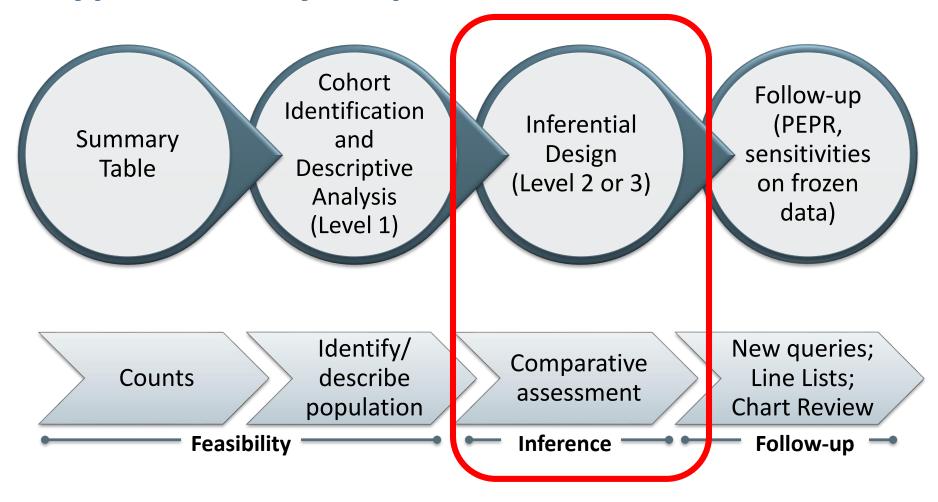
Active Risk Identification and Analysis

Sentinel Initiative

Sentinel Infrastructure

Sentinel System

Routine queries and other activities that use pre-existing data


- PRISM
- BloodSCAN
- ARIA

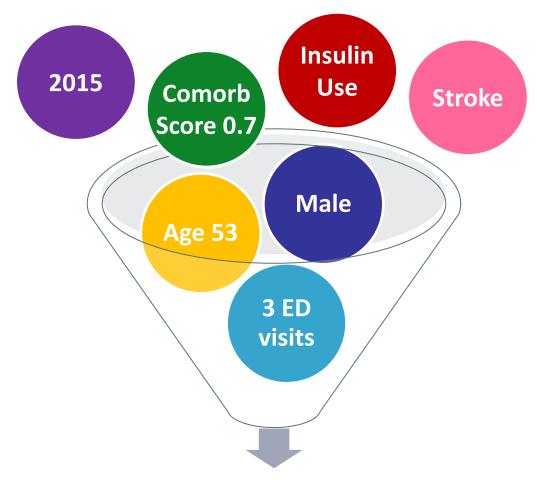
FDA-Catalyst

Routine queries + interventions and interactions with members and/or providers

Typical Query Sequence

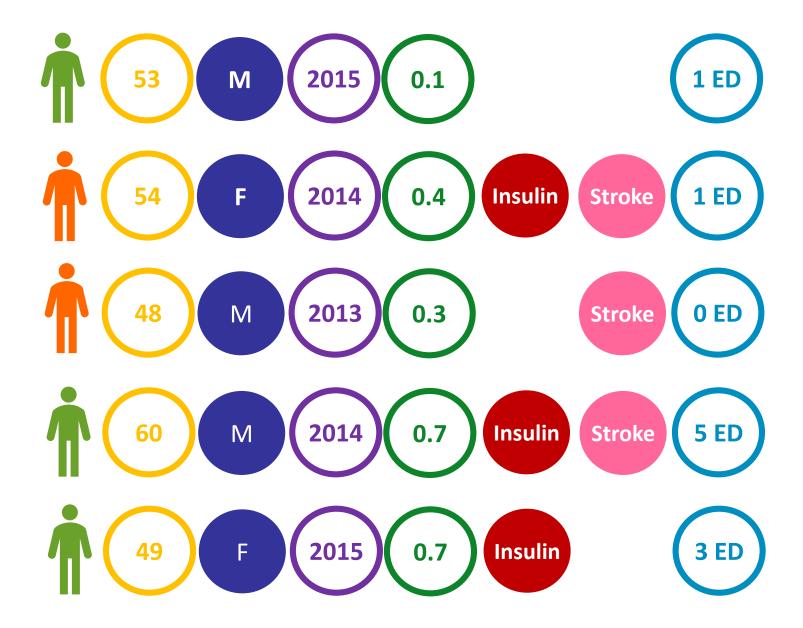
*PEPR= Patient Episode Profile Retrieval

Level 2 Capabilities in ARIA

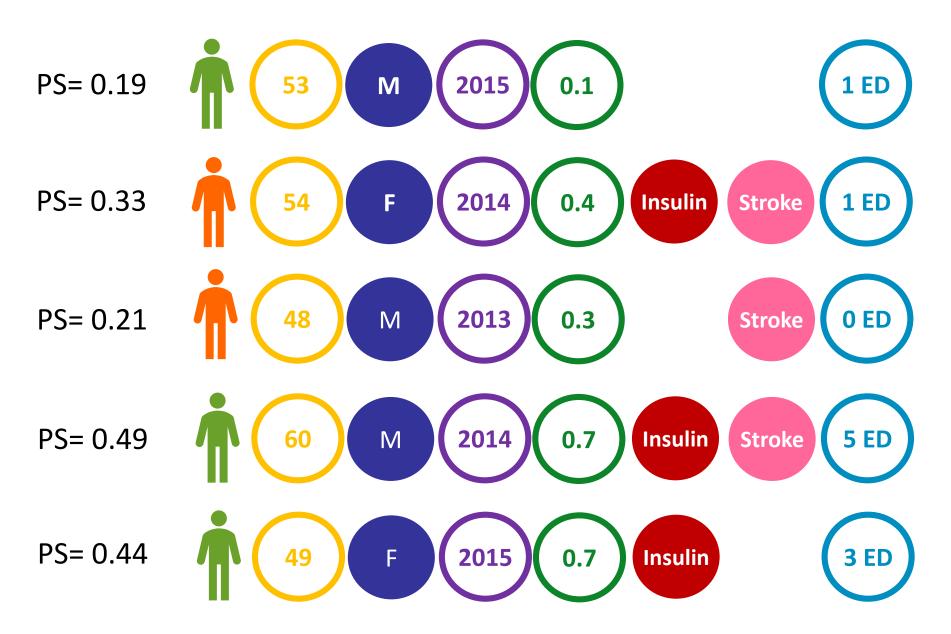

- Propensity score matching and stratification
 - New user cohort design
 - Explicit control of non-time-varying confounding
 - Observational analogue of RCT
 - Asks "why does this happen to them?"
- Self-controlled risk interval (SCRI)
 - New user, case-only design
 - Implicit control of non-time-varying confounding
 - Useful for studying acute effects of intermittent exposures
 - Asks "why does this happen now?"

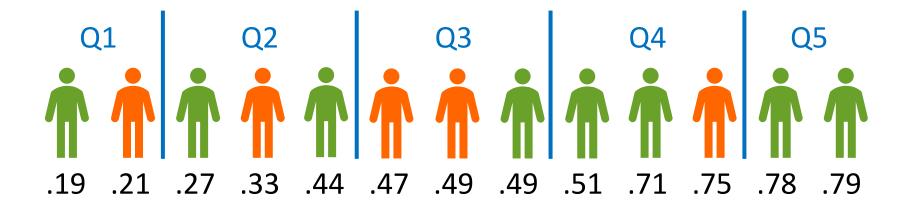
Propensity Score: A Brief Summary

A Brief Summary


Rosenbaum, P.R. and Rubin, D.B., 1983. *Biometrika*, 70(1), pp.41-55.

Propensity Score





- PS matching
 - Nearest neighbor
 - 1:1
 - Caliper= 0.05

- PS stratification
 - Quintiles

Propensity Score Matching or Stratification

	Matching	Stratification
Strengths	 Widely used Trim always-/never-treated Bias reduction: balanced measured confounders 	Keep entire cohortRetain precisionGeneralizability
Limitations	Keep matched cohort onlyLose precisionGeneralizability	 Residual confounding within extreme strata Characteristic tables (Table 1s) difficult to obtain or interpret

Case Study: ACEIs and Angioedema

Query Intended to Mimic a Completed Protocol-Based Assessment for Testing Purposes

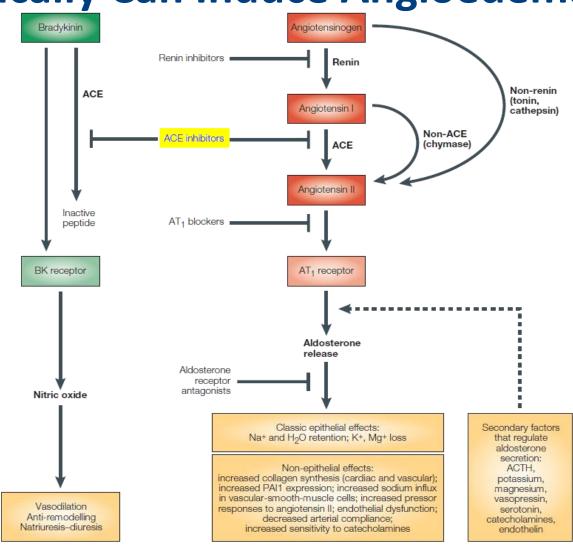
ORIGINAL INVESTIGATION

Comparative Risk for Angioedema Associated With the Use of Drugs That Target the Renin-Angiotensin-Aldosterone System

Sengwee Toh, ScD; Marsha E. Reichman, PhD; Monika Houstoun, PharmD; Mary Ross Southworth, PharmD; Xiao Ding, PhD; Adrian F. Hernandez, MD; Mark Levenson, PhD; Lingling Li, PhD; Carolyn McCloskey, MD, MPH; Azadeh Shoaibi, MS, MHS; Eileen Wu, PharmD; Gwen Zornberg, MD, MS, ScD; Sean Hennessy, PharmD, PhD

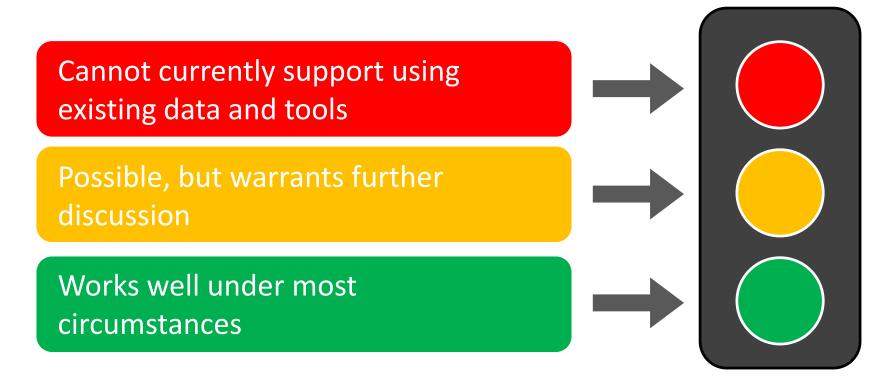
Background: Although certain drugs that target the renin-angiotensin-aldosterone system are linked to an increased risk for angioedema, data on their absolute and comparative risks are limited. We assessed the risk for angioedema associated with the use of angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), and the direct renin inhibitor aliskiren.

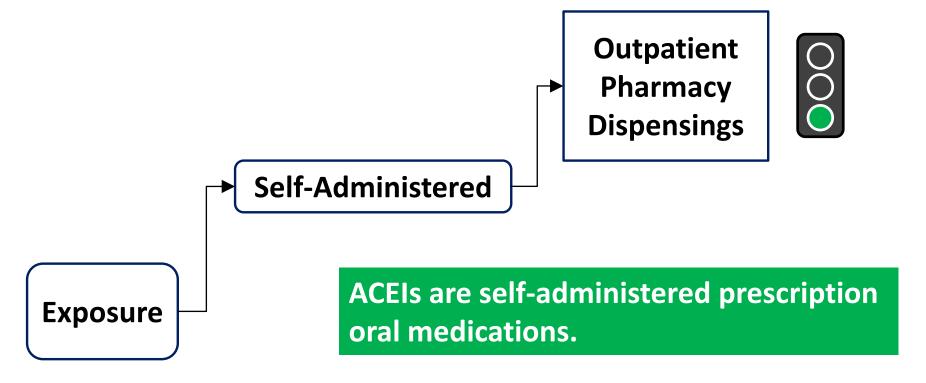
Methods: We conducted a retrospective, observational, inception cohort study of patients 18 years or older from 17 health plans participating in the Mini-Sentinel


Results: A total of 4511 angioedema events (3301 for ACEIs, 288 for ARBs, 7 for aliskiren, and 915 for β-blockers) were observed during the follow-up period. The cumulative incidences per 1000 persons were 1.79 (95% CI, 1.73-1.85) cases for ACEIs, 0.62 (95% CI, 0.55-0.69) cases for ARBs, 1.44 (95% CI, 0.58-2.96) cases for aliskiren, and 0.58 (95% CI, 0.54-0.61) cases for β-blockers. The incidence rates per 1000 person-years were 4.38 (95% CI, 4.24-4.54) cases for ACEIs, 1.66 (95% CI, 1.47-1.86) cases for ARBs, 4.67 (95% CI, 1.88-9.63) cases for aliskiren, and 1.67 (95% CI, 1.56-1.78) cases for β-blockers. Compared with the use of β-blockers, the adjusted bazard ratios were 3.04 (95% CI, 2.81, 3.27) for ΔCEIs

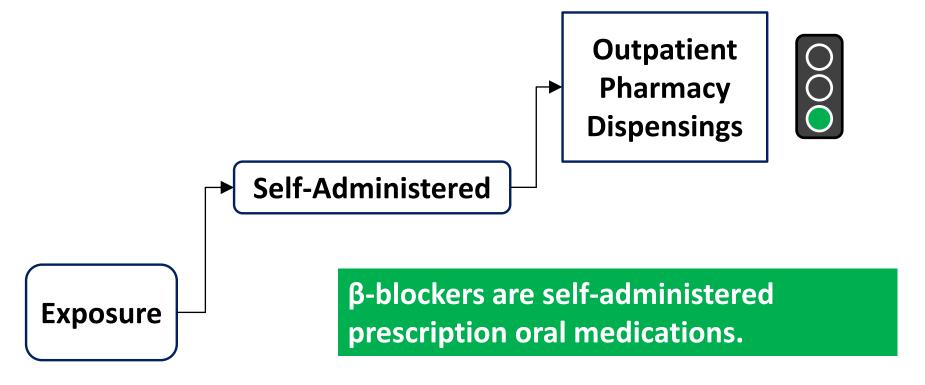
Toh et al. Comparative Risk for Angioedema Associated With the Use of Drugs That Target the Renin-Angiotensin-Aldosterone System. *Arch Intern Med.* 2012;172:1582-1589

ACEIs Biologically Can Induce Angioedema

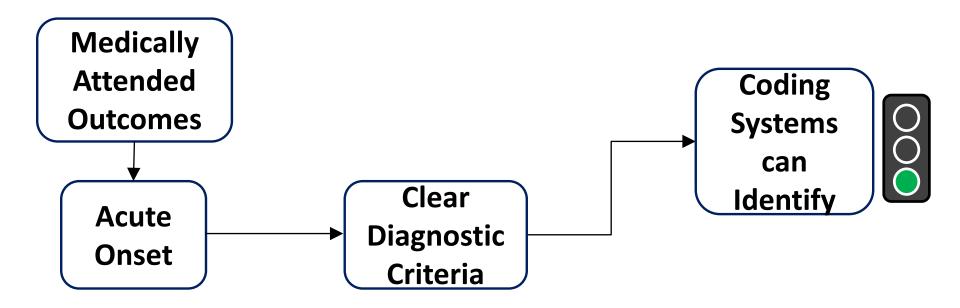

- Red Box Pathway:
 Mechanism to produce hypertension
- Green Box Pathway:
 Mechanism to produce angioedema
- Desired Effect: ACEI inhibitors interrupt the Red Box pathway
- Undesired Effect: ACEI inhibitors strengthen the Green Box pathway


Recall the Framework

- Stoplight provided as simple metric
- Describes Sentinel's current capabilities to support specific topics

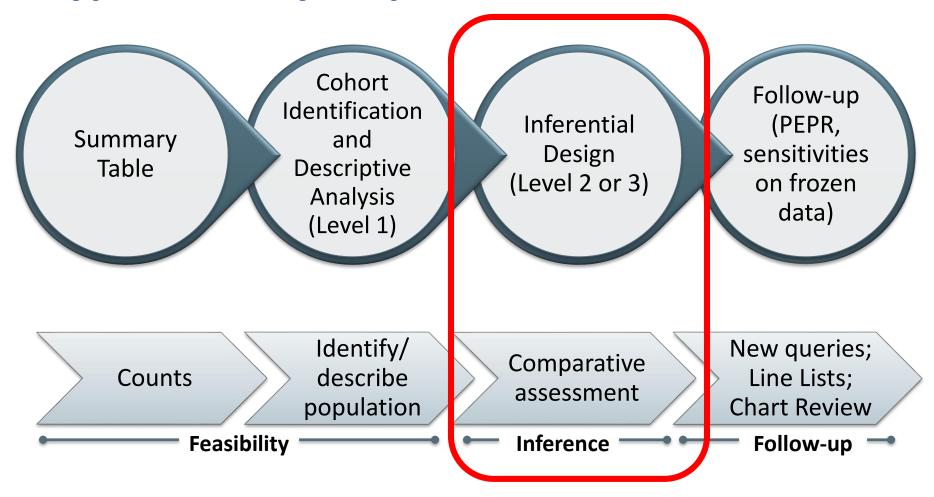


Is the Treatment Exposure Green (or Yellow)?



Is the Comparator Exposure Green (or Yellow)?

Is the Outcome Green (or Yellow)?



Angioedema* is an acute onset event with clear diagnostic criteria and administrative codes.

^{*}Previously validated outcome definition

Typical Query Sequence

*PEPR= Patient Episode Profile Retrieval

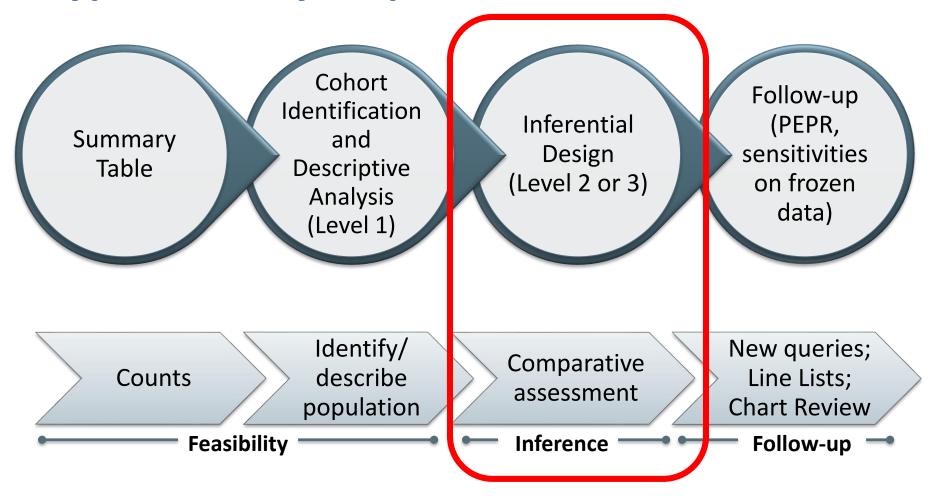
Gather Descriptive Information?

Could Level 1 queries provide useful information for a more sophisticated analysis?

User count

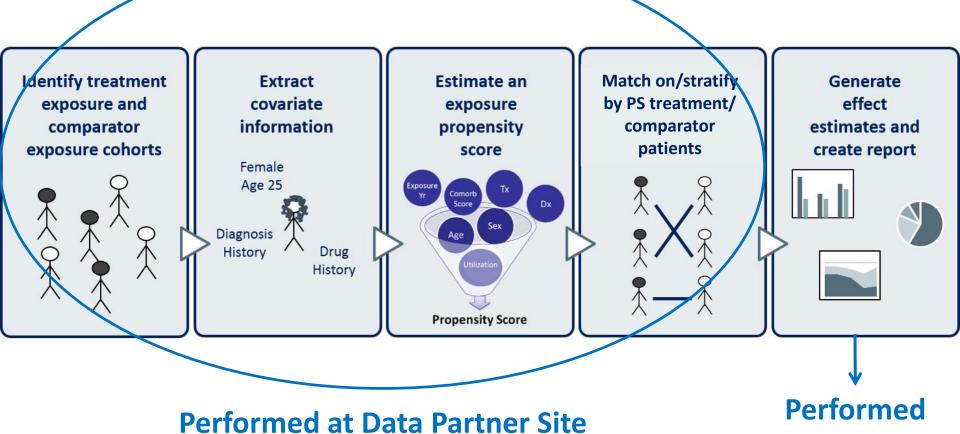
Exposure uptake

Exposure pattern


Event rate

Follow-up time

 Given the understanding and nature of the assessment (known positive relationship), we did not perform any Level 1 queries


Typical Query Sequence

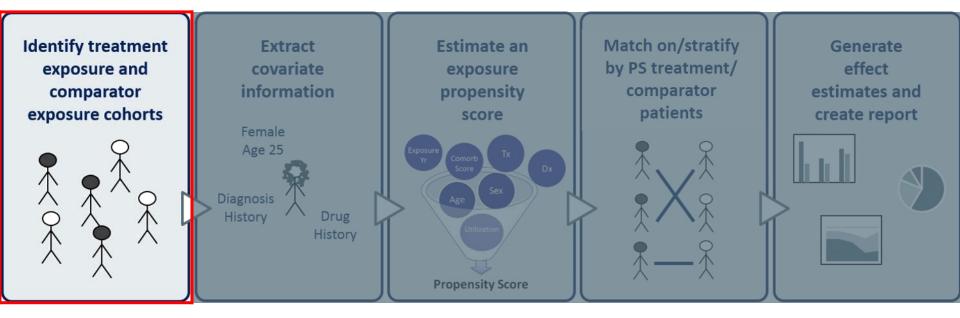
*PEPR= Patient Episode Profile Retrieval

Propensity Score Analysis in the Distributed Network

at SOC

Objective, Design, and Data

- Evaluate the association between angiotensin converting enzyme inhibitors (ACEIs) and angioedema, with β-blockers as the comparison exposure
- Study design: retrospective, new-user cohort
- Data (formatted to Sentinel Common Data Model)
 - First test distributed to all data partners contributing to the Sentinel Distributed Database (2001-2010); 13 partners returned results
 - Recent test with newer data in the Truven Health MarketScan® Commercial Claims and Encounters Database (2010-2014; results shown in this training)



Analysis

- Evaluate risk of angioedema during active treatment with an ACEI as compared to βblocker
 - Propensity score matching and stratification
 - Cox proportional hazards models
 - Maximum follow-up of 90 days

Identify Treatment and Comparator Exposure Cohorts

Define Treatment and Comparator Cohorts

- Treatment exposure of interest: ACEIs: benazepril, captopril, enalapril, fosinopril, lisinopril, moexipril, quinapril, perindopril, ramipril, and tranolapril
- Comparator exposure of interest: β-blockers:
 acebutolol, atenolol, betaxolol, bisoprolol, carvedilol,
 labetalol, metoprolol, nadolol, nebivolol, sotalol,
 penbutolol, pindolol, propranolol, and timolol

 Use evidenced by National Drug Codes recorded in outpatient pharmacy dispensings

Who is in the Cohort?

Washout/Lookback Duration

No evidence of ACEI or β-blocker use in prior 183 days

Translate Options into Specifications

Main Query and New User Parameters Washout/ **Products Product** Query Age Coverage Lookback **Defining Period** Groups Name **New Use Period ACEIS** 01/01/2011 Medical + 18+ 183 days ACEIs, β--12/31/2014 blockers Drug 01/01/2011 β-blockers, β-blockers Medical + 18+ 183 days -12/31/2014 **ACEIS** Drug

Define Inclusion/Exclusion Criteria

- Requesters may specify cohort inclusion and/or exclusion criteria
 - Specify a pre-exposure period to evaluate presence/absence of medical conditions or treatment of interest

- Requires enrollment during pre-exposure period
 - Evidence of continuous medical and/or drug coverage (requirements are requester-defined)

info@sentinelsystem.org

Who is in the Cohort?

Washout/Lookback Duration

No evidence of ACEI or β-blocker use in prior 183 days

Exclusion Criteria Assessment

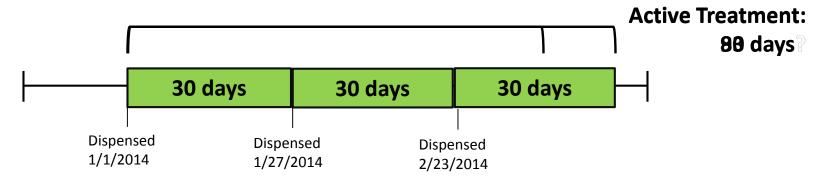
No evidence of aliskiren or ARB use in prior 183 days

1/1/2011

Exposure Initiation (Day 0)

12/31/2014

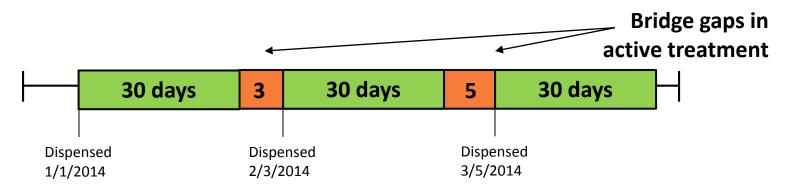
Translate Options into Specifications


Inclusion/Exclusion Criteria Parameters							
Cohort Name	Include or Exclude	Criteria	Evaluation Window				
ACEIs	Exclude	Aliskiren, ARB	183 days before ACEI initiation				
β-blockers	Exclude	Aliskiren, ARB	183 days before β- blocker initiation				

ARB= angiotensin II receptor blocker

How to Define an Exposure Episode?

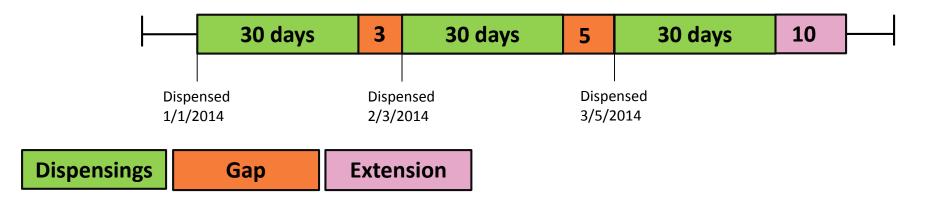
- Create episodes by observing outpatient pharmacy dispensing patterns
 - Uses dispensing date and days supply
 - Options
 - Adjust for early refill patterns with "stockpiling algorithm"

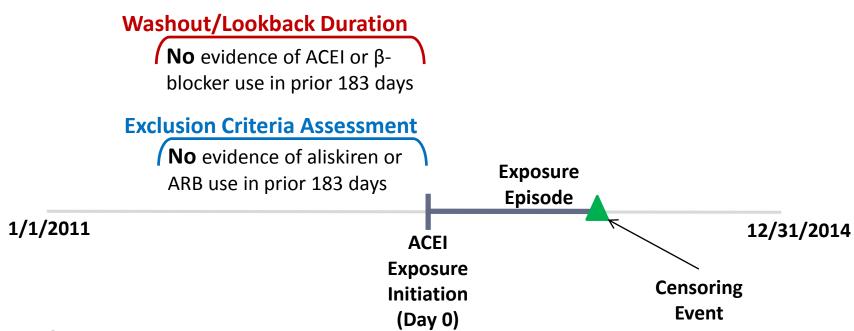


Dispensings

How to Define an Exposure Episode?

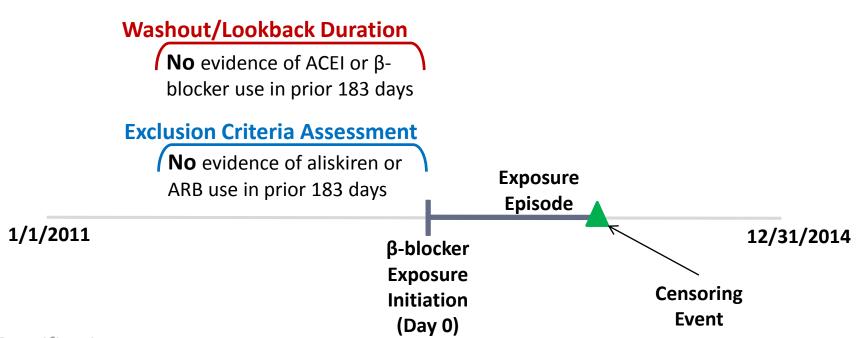
- Create episodes by observing outpatient pharmacy dispensing patterns
 - Uses dispensing date and days supply
 - Options
 - Adjust for late refill patterns with allowable gaps




How to Define an Exposure Episode?

- Create episodes by observing outpatient pharmacy dispensing patterns
 - Uses dispensing date and days supply
 - Options
 - Extend at-risk time beyond active treatment with an exposure extension

Who is in the ACEI New User Cohort?



Specifications

- Age 18+ at exposure initiation
- Continuous enrollment in medical and drug coverage during washout/lookback duration
- Exposure episode created using outpatient pharmacy dispensings' days supplied with 14day episode gap and extension
- Censoring event can be 1) disenrollment, 2) data or query end; 3) β-blocker, ARB, aliskiren exposure; 4) death; 5) 90 days after index exposure

Who is in the β-blocker New User Cohort?

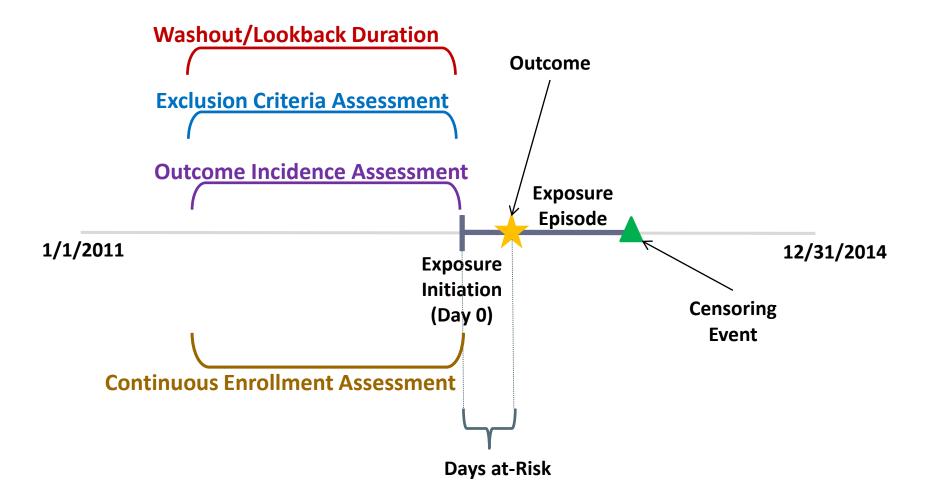
Specifications

- Age 18+ at exposure initiation
- Continuous enrollment in medical and drug coverage during washout/lookback duration
- Exposure episode created using outpatient pharmacy dispensings' days supplied with 14day episode gap and extension
- Censoring event can be 1) disenrollment, 2) data or query end; 3) ACEI, ARB, aliskiren exposure; 4) death; 5) 90 days after index exposure

Translate Options into Specifications

Exposure Episode Parameters							
Product Name	Early Refill Pattern Approach	Late Refill Pattern Approach	Exposure Extension	Episode Censoring Criteria			
ACEIs	Standard "stockpiling" algorithm	14-day allowable episode gap	14 days	 Disenrollment Data or query end; β-blocker, ARB, aliskiren exposure; Death 90 days of follow-up 			
β-blockers	Standard "stockpiling" algorithm	14-day allowable episode gap	14 days	 Disenrollment Data or query end; ACEI, ARB, aliskiren exposure; Death 90 days of follow-up 			

info@sentinelsystem.org


Define Outcome of Interest

- Define the outcome using any combination of codes in the distributed database
 - Outcomes can be required to occur in specific care settings (e.g., inpatient, outpatient)
 - Inpatient diagnosis codes used to define outcomes can be required in a specific position (e.g., principal discharge diagnosis, secondary)

 New, or incident, outcomes defined as no prior occurrence in requester-defined pre-exposure period

Who is in the Cohort?

Complex Algorithms Can be Used to Define Outcomes

- Outcomes are sometimes defined with single codes
 - Angioedema: any inpatient, outpatient, or ED with ICD-9-CM diagnosis of 995.1
- But can use AND and/or OR operators to require two or more codes to occur within a pre-specified window
 - Serious angioedema: inpatient diagnosis PLUS intensive care unit admission, intubation, tracheostomy, or laryngoscopy within 2 days of hospital admission

Translate Options into Specifications

Outcome Parameters						
Outcome	Incidence Criteria					
Angioedema*	Angioedema, as identified by ICD-9-CM code 995.1 recorded in any position during an outpatient, inpatient, or emergency department encounter	183 days				

* Previously validated outcome definition

Miller DR, Oliveria SA, Berlowitz DR, Fincke BG, Stang P, Lillienfeld DE. Angioedema incidence in US veterans initiating angiotensin-converting enzyme inhibitors. *Hypertension*. 2008;51(6):1624-163

Brown NJ, Snowden M, Griffin MR. Recurrent angiotensin-converting enzyme inhibitor—associated angioedema. *JAMA*. 1997;278(3):232-233 Brown NJ, Ray WA, Snowden M, Griffin MR. Black Americans have an increased rate of angiotensin converting enzyme inhibitor—associated angioedema. *Clin Pharmacol Ther*. 1996;60(1):8-13

Cohort Identification Summary

- Treatment: ACEIs
- Comparator: β-blockers

- Outcome Incidence Assessment

 Outcome Incidence Assessment

 Exposure Episode

 1/1/2011

 Exposure Initiation (Day 0)

 Continuous Enrollment Assessment

 Days at-Risk
- Included: age 18+ years with an exposure washout of ≥183 days
- <u>Excluded</u>: patients with the following during washout: 1) study drug of the other class; 2) aliskiren; 3) ARBs; 4) angioedema
- Follow-up: began on exposure initiation and continued until first occurrence of 1) angioedema; 2) death; 3) disenrollment; 4) cessation of study drug use; 5) initiation of aliskiren, another study drug of a different class, or an ARB; 6) query end; 7) data end; 8) 90 days after exposure
- Outcome: angioedema

Original Report

Good Practices for Real-World Data Studies of Treatment and/or Comparative Effectiveness: Recommendations from the Joint ISPOR-ISPE Special Task Force on Real-World Evidence in Health Care Decision Making

Marc L. Berger^{1,*}, Harold Sox², Richard J. Willke³, Diana L. Brixner⁴, Hans-Georg Eichler⁵, Wim Goettsch⁶, David Madigan⁷, Amr Makady⁶, Sebastian Schneeweiss⁸, Rosanna Tarricone⁹, Shirley V. Wang⁸, John Watkins¹⁰, C. Daniel Mullins¹¹

Original Report

Reporting to Improve Reproducibility and Facilitate Validity Assessment for Healthcare Database Studies V1.0

Shirley V. Wang^{1,2,*}, Sebastian Schneeweiss^{1,2}, Marc L. Berger³, Jeffrey Brown⁴, Frank de Vries⁵, Ian Douglas⁶, Joshua J. Gagne^{1,2}, Rosa Gini⁷, Olaf Klungel⁸, C. Daniel Mullins⁹, Michael D. Nguyen¹⁰, Jeremy A. Rassen¹¹, Liam Smeeth⁶, Miriam Sturkenboom¹², on behalf of the joint ISPE-ISPOR Special Task Force on Real World Evidence in Health Care Decision Making

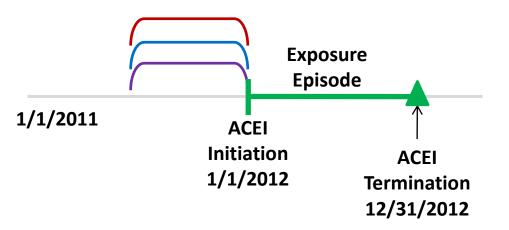
¹Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women's Hospital, MA, USA; ²Department of Medicine, Harvard Medical School, MA, USA; ³Pfizer, NY, USA; ⁴Department of Population Medicine, Harvard Medical School, MA, USA; ⁵Department of Clinical Pharmacy, Maastricht UMC+, The Netherlands; ⁶London School of Hygiene and Tropical Medicine, England, UK; ⁷Agenzia regionale di sanità della Toscana, Florence, Italy; ⁸Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht University, Utrecht, Netherlands; ⁹Pharmaceutical Health Services Research Department, University of Maryland School of Pharmacy, MA, USA; ¹⁰FDA Center for Drug Evaluation and Research, USA; ¹¹Aetion, Inc., NY, USA; ¹²Erasmus University Medical Center Rotterdam, Netherlands

¹Nei Phai

Med Neu

Italy

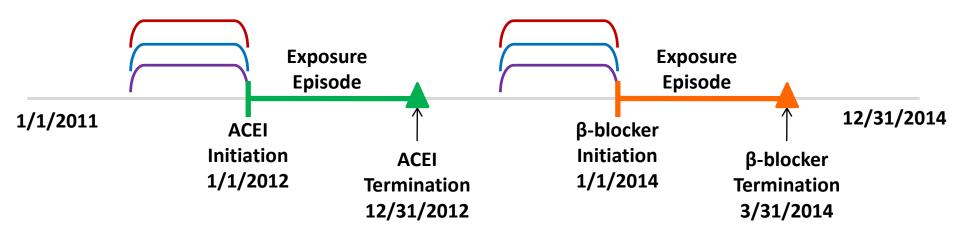
Propensity Score Analysis Pre-Processing: Evaluate Overlap in ACEI and β-blocker Users


 If the same patient initiates treatment and comparator exposures on the same day, the patient is removed from analysis

 If the same patient is identified in the exposure and comparator cohorts, the patient is retained in the cohort of earliest exposure

Patient "A"

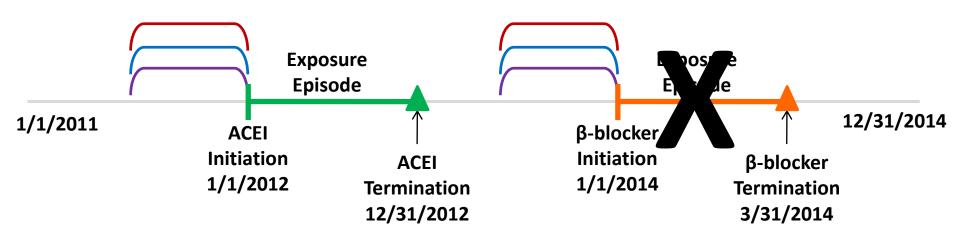
Washout/Lookback Duration
Exclusion Criteria Assessment
Outcome Incidence Assessment



Patient "A"

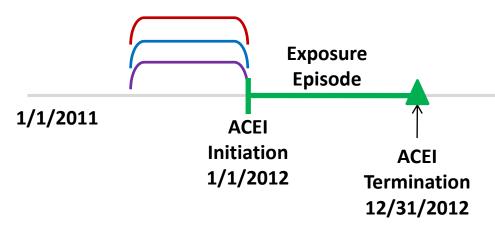
Washout/Lookback Duration

Exclusion Criteria Assessment


Outcome Incidence Assessment

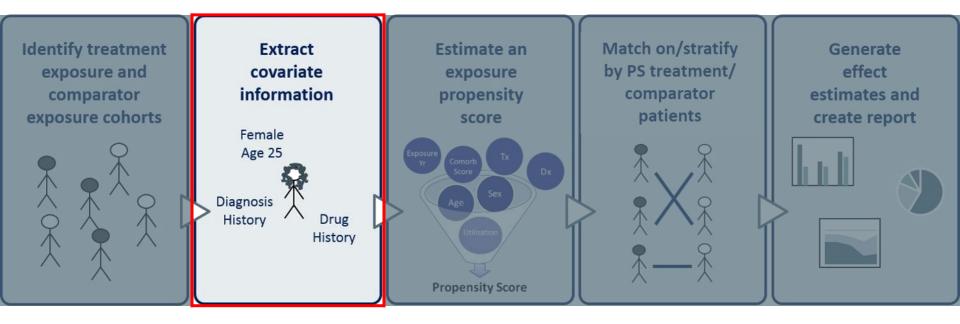
Patient "A"

Washout/Lookback Duration
Exclusion Criteria Assessment
Outcome Incidence Assessment



Patient "A"

Washout/Lookback Duration


Exclusion Criteria Assessment

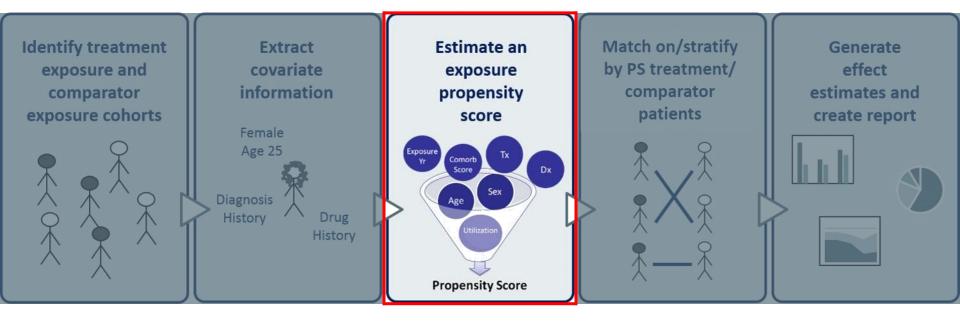
Outcome Incidence Assessment

Extract Covariates (Risk Factors)

Define Covariates of Interest for PS Estimation

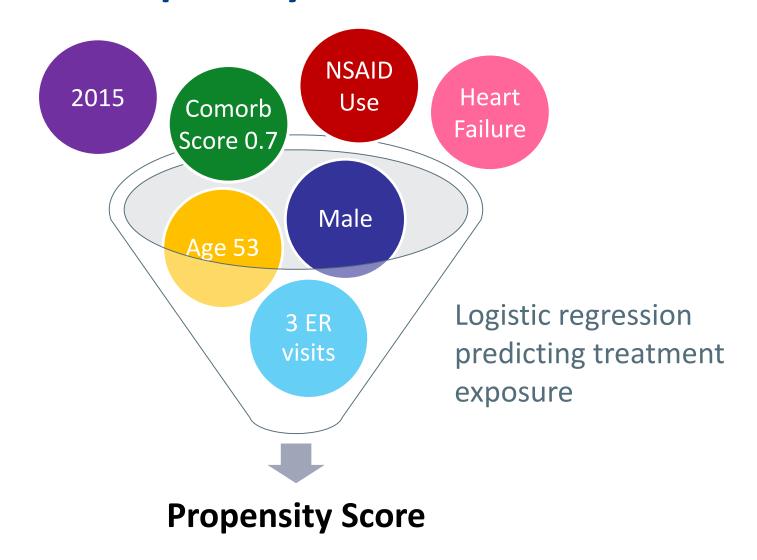
- Requesters specify covariates for inclusion in the propensity score estimation model
 - Age, sex, year of exposure initiation
 - Any clinical concept that can be defined using a list of codes available in the distributed database
 - Healthcare utilization metrics
 - E.g., number of inpatient, outpatient, emergency dept. encounters
 - Drug utilization metrics
 - E.g., number of dispensings, unique generics dispensed
- Lookback period for covariate assessment defined by requester

info@sentinelsystem.org

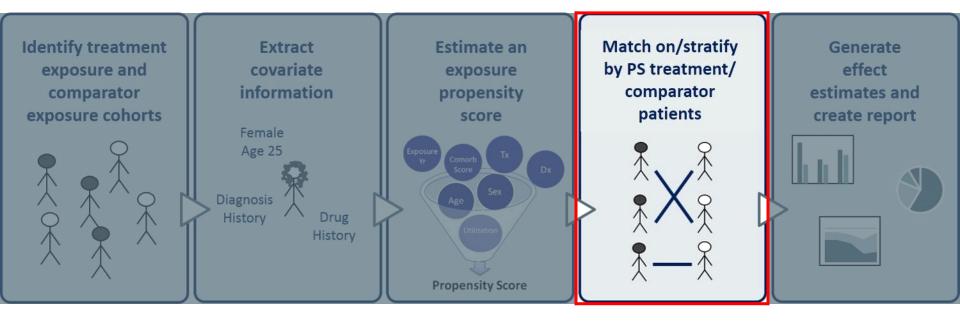


Translate Options into Specifications

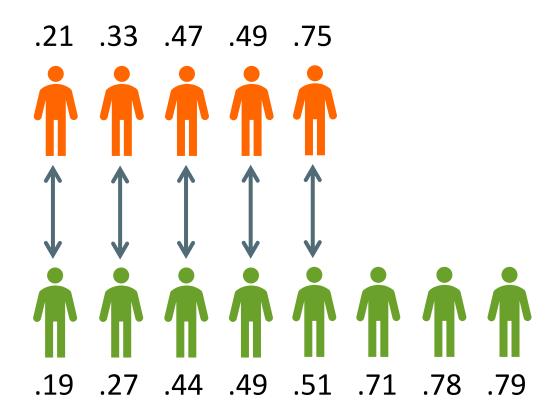
Propensity Score Estimation Parameters					
Covariates	Evaluation Window				
Age (continuous)					
Sex (M/F)					
Year of exposure (4 variables)					
Comorbidity score (continuous)					
Healthcare utilization (5 continuous variables)					
Drug utilization (3 continuous variables)	183 days before exposure				
History of allergic reactions (Y/N)	initiation				
History of diabetes mellitus (Y/N)					
History of heart failure (Y/N)					
History of ischemic heart disease (Y/N)					
Use of prescription NSAIDs (Y/N)					



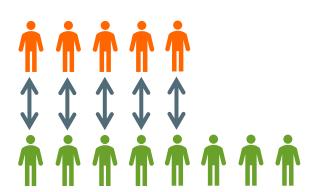
Estimate an Exposure Propensity Score



Estimate a Propensity Score at Data Partner

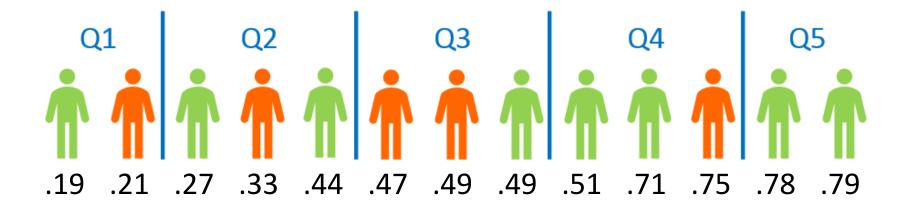


Match on or Stratify by Propensity Score Treatment and Comparator Patients


- PS matching
 - Nearest neighbor
 - 1:1
 - Caliper= 0.05

Matching: Ratio and Caliper

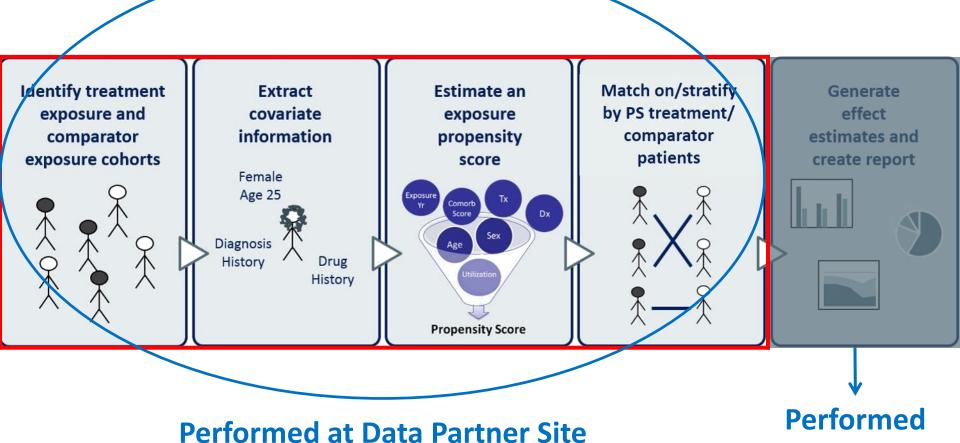
- Nearest neighbor
 - Algorithm aims to reduce the absolute difference in propensity scores across all matched sets



Ratio

- 1:1 matching, without replacement
- Option= 1: $n (n \le 10)$
- Caliper: can be set as any value 0-1
 - Maximum distance allowed between two matched patients' PS
 - Natural scale of PS (e.g., 0.01, 0.05)

- PS stratification
 - Quintiles



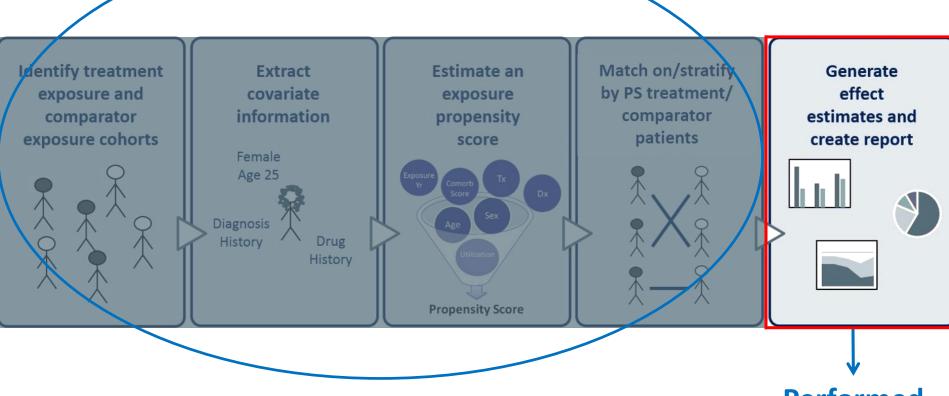
Divide treatment and comparator exposure cohorts into requester-defined PS percentiles

- Percentile: can be set as any value 1-100
 - E.g., 10= deciles, 5= quintiles

Before Package Distribution ...

at SOC

Conduct Sensitivity Analyses?


- Options include:
 - New user criteria (e.g., 183 versus 365-day washout period)
 - Inclusion/exclusion criteria
 - Exposure episode creation parameters (extensions, gaps, stockpiling)
 - Algorithms to define the outcome
 - Lookback windows for inclusion/exclusion and covariates
 - Follow-up to as-treated, or various maximum period
 - Matching ratio/caliper

info@sentinelsystem.org

Stratification percentiles

Generate Effect Estimates and Create Report

Performed at Data Partner Site

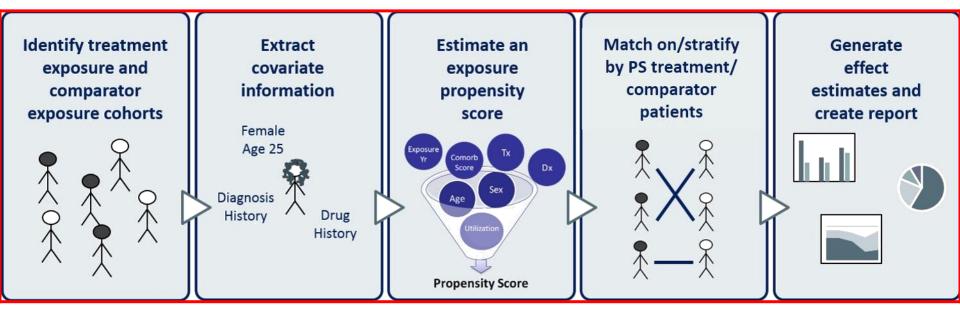
Specify Cox Proportional Hazards Model

- Effect estimation performed via Cox proportional hazards model
- Requesters may specify PS-adjusted analysis
 - Matched unconditional analysis
 - Option= matched conditional (stratified by matched set) analysis
 - Stratified analysis

- Outcome models also stratified by Data Partner
- Unmatched results output by default

Specify Subgroup Analyses (Matching Only)

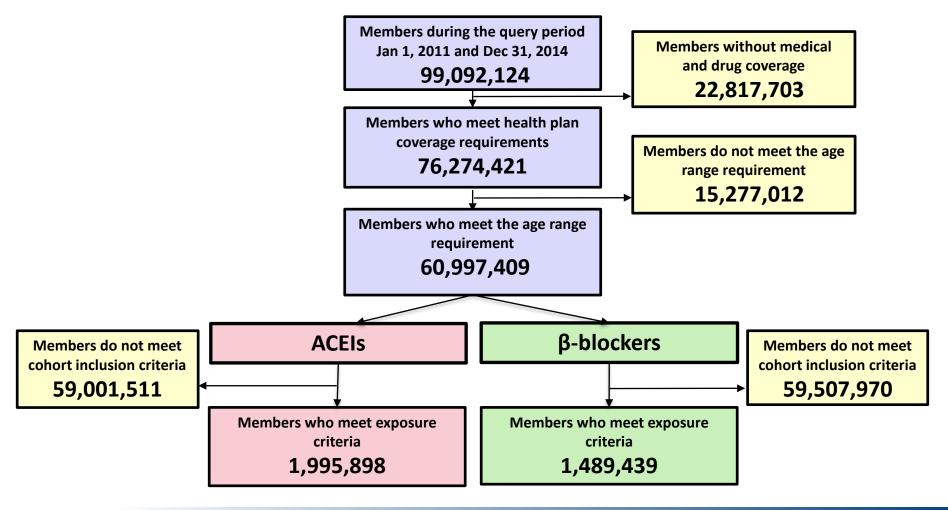
- Evaluate treatment effects by subsets of the population
 - May use levels of any requester-defined covariates
- Current capability:
 - Rematch patients within subgroup levels and perform effect estimation
- Future capability:
 - Match on PS and subgroup level(s)
 - Rematching will not be necessary before effect estimation



Translate Options into Specifications

Propensity Score Analysis Parameters				
Matching ratio	1:1			
Matching caliper	0.025			
Stratification percentile	5 (quintile)			
Cox model	Unmatched Matched unconditional Stratified			
Subgroup analysis	No			

Evaluate Results


Output Includes Diagnostics, Effect Estimates

- By Data Partner
 - Cohort attrition table
 - Cohort censoring table
 - Number of episodes by censored time and censoring reasons (e.g., disenrollment, episode end, data end, or death)
 - Propensity score distributions, pre/post matching
- Aggregate
 - Cohort baseline characteristics, pre/post matching
 - Kaplan-Meier plots
 - Effect estimates and 95% confidence intervals

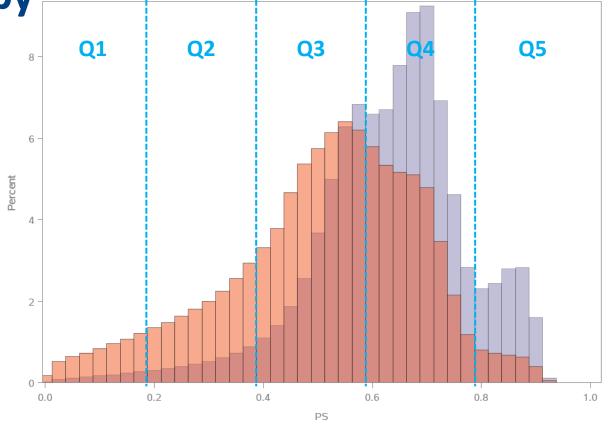
User can choose output to receive (e.g., evaluate diagnostics before evaluating frequency of outcomes)

Review Cohort Attrition for Treatment and Comparator Exposure Cohorts

		Medical Product				Covariate Balance		
Characteristic	ACE Inhibitors		Beta Blockers		Difference			
	N	%	N	%	Absolute	Standardized		
Patients	1,838,853	100.0%	1,330,298	100.0%	-	-		
Demographics								
Age (mean, std)	53.4	12.9	52.5	16.4	0.91	0.062		
Gender (female)	832,867	45.3%	778,726	58.5%	-13.25	-0.267		
Recorded history of								
Allergic reactions	77,685	4.2%	77,787	5.8%	-1.62	-0.074		
Diabetes	365,640	19.9%	137,309	10.3%	9.56	0.269		
Heart failure	22,613	1.2%	56,455	4.2%	-3.01	-0.186		
Ischemic heart disease	68,552	3.7%	165,536	12.4%	-8.72	-0.324		
NSAIDs	268,443	14.6%	201,748	15.2%	-0.57	-0.016		
Selected Health Service Utilization Intensity								
Ambulatory encounters (mean, std)	4.9	6.6	7.2	9.1	-2.37	-0.297		
Emergency room encounters (mean, std)	0.2	0.7	0.4	1.0	-0.17	-0.202		
Inpatient hospital encounters (mean, std)	0.1	0.3	0.2	0.5	-0.15	-0.328		
Filled prescriptions (mean, std)	9.2	9.6	11.1	11.2	-1.84	-0.177		
Unique drug classes (mean, std)	4.7	3.2	5.7	3.8	-0.99	-0.279		

	Medical Product				Covariate Balance	
Characteristic	ACE Inhibitors		Beta Blockers		Diff	erence
	N	%	N	%	Absolute	Standardized
Patients	1,838,853	100.0%	1,330,298	100.0%	-	-
Demographics						
Age (mean, std)	53.4	12.9	52.5	16.4	0.91	0.062
Gender (female)	832,867	45.3%	778,726	58.5%	-13.25	-0.267
Recorded history of						
Allergic reactions	77,685	4.2%	77,787	5.8%	-1.62	-0.074
Diabetes	365,640	19.9%	137,309	10.3%	9.56	0.269
Heart failure	22,613	1.2%	56,455	4.2%	-3.01	-0.186
Ischemic heart disease	68,552	3.7%	165,536	12.4%	-8.72	-0.324
NSAIDs	268,443	14.6%	201,748	15.2%	-0.57	-0.016
Selected Health Service Utilization Intensity						
Ambulatory encounters (mean, std)	4.9	6.6	7.2	9.1	-2.37	-0.297
Emergency room encounters (mean, std)	0.2	0.7	0.4	1.0	-0.17	-0.202
Inpatient hospital encounters (mean, std)	0.1	0.3	0.2	0.5	-0.15	-0.328
Filled prescriptions (mean, std)	9.2	9.6	11.1	11.2	-1.84	-0.177
Unique drug classes (mean, std)	4.7	3.2	5.7	3.8	-0.99	-0.279

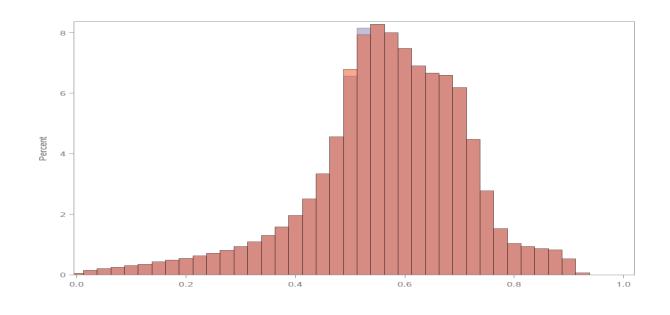
	Medical Product				Covariate Balance		
Characteristic	ACE Inhibitors		Beta Blockers		Difference		
	N	%	N	%	Absolute	Standardized	
Patients	1,838,853	100.0%	1,330,298	100.0%	-	-	
Demographics							
Age (mean, std)	53.4	12.9	52.5	16.4	0.91	0.062	
Gender (female)	832,867	45.3%	778,726	58.5%	-13.25	-0.267	
Recorded history of							
Allergic reactions	77,685	4.2%	77,787	5.8%	-1.62	-0.074	
Diabetes	365,640	19.9%	137,309	10.3%	9.56	0.269	
Heart failure	22,613	1.2%	56,455	4.2%	-3.01	-0.186	
Ischemic heart disease	68,552	3.7%	165,536	12.4%	-8.72	-0.324	
NSAIDs	268,443	14.6%	201,748	15.2%	-0.57	-0.016	
Selected Health Service Utilization Intensity							
Ambulatory encounters (mean, std)	4.9	6.6	7.2	9.1	-2.37	-0.297	
Emergency room encounters (mean, std)	0.2	0.7	0.4	1.0	-0.17	-0.202	
Inpatient hospital encounters (mean, std)	0.1	0.3	0.2	0.5	-0.15	-0.328	
Filled prescriptions (mean, std)	9.2	9.6	11.1	11.2	-1.84	-0.177	
Unique drug classes (mean, std)	4.7	3.2	5.7	3.8	-0.99	-0.279	


	Medical Product				Covariate Balance	
Characteristic	ACE Inhibitors		Beta Blockers		Diff	erence
	N	%	N	%	Absolute	Standardized
Patients	1,838,853	100.0%	1,330,298	100.0%	-	-
Demographics						
Age (mean, std)	53.4	12.9	52.5	16.4	0.91	0.062
Gender (female)	832,867	45.3%	778,726	58.5%	-13.25	-0.267
Recorded history of						
Allergic reactions	77,685	4.2%	77,787	5.8%	-1.62	-0.074
Diabetes	365,640	19.9%	137,309	10.3%	9.56	0.269
Heart failure	22,613	1.2%	56,455	4.2%	-3.01	-0.186
Ischemic heart disease	68,552	3.7%	165,536	12.4%	-8.72	-0.324
NSAIDs	268,443	14.6%	201,748	15.2%	-0.57	-0.016
Selected Health Service Utilization Intensity						
Ambulatory encounters (mean, std)	4.9	6.6	7.2	9.1	-2.37	-0.297
Emergency room encounters (mean, std)	0.2	0.7	0.4	1.0	-0.17	-0.202
Inpatient hospital encounters (mean, std)	0.1	0.3	0.2	0.5	-0.15	-0.328
Filled prescriptions (mean, std)	9.2	9.6	11.1	11.2	-1.84	-0.177
Unique drug classes (mean, std)	4.7	3.2	5.7	3.8	-0.99	-0.279

Evaluate Pre-Matching Propensity Score

Distributions by Data Partner

- Whether the two cohorts can reasonably be compared (no complete discrimination)
- Analytic cohort for PS stratification



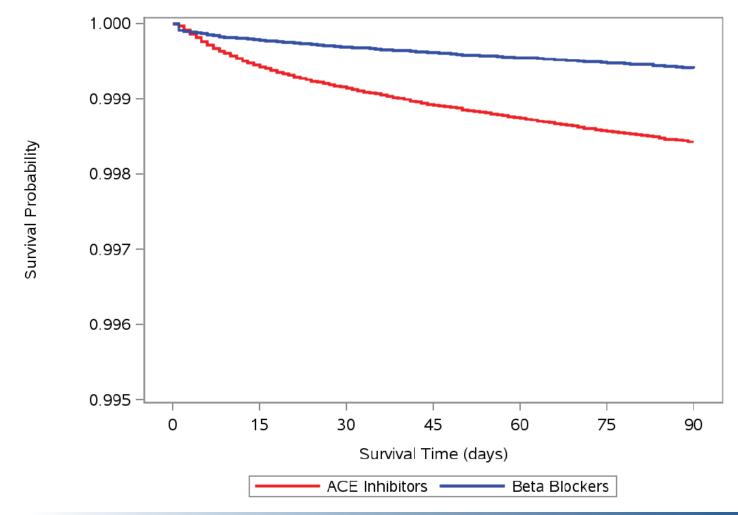
Histogram of β-blocker

Evaluate Post-Matching Propensity Score Distributions by Data Partner

Whether matching performs well

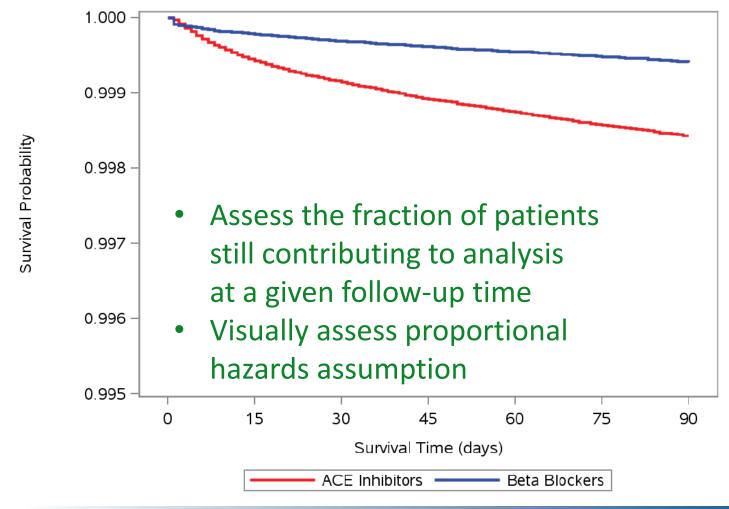
Histogram of ACEI

Histogram of β-blocker



	N	Medical F	Covariate Balance			
Characteristic	ACE Inhibitors		Beta Blockers		Diff <u>erence</u>	
	N	%	N	%	Absolute	Standardized
Patients (N)	1,029,223	56.0%	1,029,223	77.4%	_	-
Demographics						
Age (mean, std)	52.6	13.3	53	15.6	-0.36	-0.025
Gender (female)	589,675	57.3%	564,570	54.9%	2.44	0.049
Recorded history of						
Allergic reactions	51,720	5.0%	50,639	4.9%	0.11	0.005
Diabetes	114,890	11.2%	113,886	11.1%	0.10	0.003
Heart failure	20,162	2.0%	23,927	2.3%	-0.37	-0.025
Ischemic heart disease	64,070	6.2%	67,646	6.6%	-0.35	-0.014
NSAIDs	153,261	14.9%	151,741	14.7%	0.15	0.004
Selected Health Service Utilization Intensity						
Ambulatory encounters (mean, std)	5.8	7.9	5.8	7.0	0.03	0.004
Emergency room encounters (mean, std)	0.3	0.8	0.3	0.7	-0.01	-0.009
Inpatient hospital encounters (mean, std)	0.1	0.4	0.1	0.4	-0.01	-0.028
Filled prescriptions (mean, std)	9.9	10.2	9.9	10.1	0.08	0.008
Unique drug classes (mean, std)	5.1	3.5	5.1	3.4	0.01	0.004

Evaluate Kaplan-Meier Survival Curves


Matched cohort, unconditional

Evaluate Kaplan-Meier Survival Curves

Matched cohort, unconditional

- Pre-matching distributions tell us
 - Distribution of the treatment and comparator exposure groups within each stratum

- Pre-matching distributions tell us
 - Distribution of the treatment and comparator exposure groups within each stratum
- Stratum-specific summary

Quantile	ACEI	β blocker	Event_ACEI	Event_βblocker	FUTime_ACEI	FUTime_βblocker
Overall	1,838,853	1,330,298	2,345	619	127,413,153	82,500,727
1	181,582	452,248	338	242	11,871,783	27,662,205
2	320,632	313,198	605	130	21,690,394	19,380,254
3	391,912	241,919	499	106	27,078,032	15,185,315
4	448,589	185,242	449	77	31,369,197	11,553,511
5	496,138	137,691	454	64	35,403,747	8,719,442

- Pre-matching distributions tell us
 - Distribution of the treatment and comparator exposure groups within each stratum
- Stratum-specific summary

Quantile	ACEI	β blocker	Event_ACEI	Event_βblocker	FUTime_ACEI	FUTime_βblocker
Overall	1,838,853	1,330,298	2,345	619	127,413,153	82,500,727
1	181,582	452,248	338	242	11,871,783	27,662,205
2	320,632	313,198	605	130	21,690,394	19,380,254
3	391,912	241,919	499	106	27,078,032	15,185,315
4	448,589	185,242	449	77	31,369,197	11,553,511
5	496,138	137,691	454	64	35,403,747	8,719,442

- Pre-matching distributions tell us
 - Distribution of the treatment and comparator exposure groups within each stratum
- Stratum-specific summary

Quantile	ACEI	β blocker	Event_ACEI	Event_βblocker	FUTime_ACEI	FUTime_βblocker
Overall	1,838,853	1,330,298	2,345	619	127,413,153	82,500,727
1	181,582	452,248	338	242	11,871,783	27,662,205
2	320,632	313,198	605	130	21,690,394	19,380,254
3	391,912	241,919	499	106	27,078,032	15,185,315
4	448,589	185,242	449	77	31,369,197	11,553,511
5	496,138	137,691	454	64	35,403,747	8,719,442

- Pre-matching distributions tell us
 - Distribution of the treatment and comparator exposure groups within each stratum
- Stratum-specific summary

Quantile	ACEI	β blocker	Event_ACEI	Event_βblocker	FUTime_ACEI	FUTime_βblocker
Overall	1,838,853	1,330,298	2,345	619	127,413,153	82,500,727
1	181,582	452,248	338	242	11,871,783	27,662,205
2	320,632	313,198	605	130	21,690,394	19,380,254
3	391,912	241,919	499	106	27,078,032	15,185,315
4	448,589	185,242	449	77	31,369,197	11,553,511
5	496,138	137,691	454	64	35,403,747	8,719,442

- Pre-matching distributions tell us
 - Distribution of the treatment and comparator exposure groups within each stratum
- Stratum-specific summary

Quantile	ACEI	β blocker	Event_ACEI	Event_βblocker	FUTime_ACEI	FUTime_βblocker
Overall	1,838,853	1,330,298	2,345	619	127,413,153	82,500,727
1	181,582	452,248	338	242	11,871,783	27,662,205
2	320,632	313,198	605	130	21,690,394	19,380,254
3	391,912	241,919	499	106	27,078,032	15,185,315
4	448,589	185,242	449	77	31,369,197	11,553,511
5	496,138	137,691	454	64	35,403,747	8,719,442

 More outputs are in development, including stratumspecific cohort characteristic tables (Table 1s)

Medical Product	New Users	PY at Risk	Average PY at Risk	Events	IR per 1000 PY	Risk per 1000 New Users	IRD per 1000 PY	RD per 1000 New Users	Hazard Ratio (95% CI)	Wald P-Value
Unmatched A	Analysis (DP :	Site-adjuste	d only)							
ACEIs	1,838,853	348,838	0.19	2,345	6.72	1.28	3.98	0.81	2.54	<.0001
β-Blockers	1,330,298	225,875	0.17	619	2.74	0.47	5.96	0.81	(2.33, 2.78)	<.0001
1:1 Matched	Uncondition	al Analysis								
ACEIs	1,029,223	192,920	0.19	1,530	7.93	1.49	5.34	1.04	3.15	<.0001
β-Blockers	1,029,223	175,437	0.17	455	2.59	0.44	5.54	1.04	(2.83, 3.49)	<.0001
Stratified Per	rcentile Analy	ysis								
ACEIs	1,838,853	348,838	0.19	2,345	6.72	1.28	3.98	0.81	3.05	< 0001
β-Blockers	1,330,298	225,875	0.17	619	2.74	0.47	5.30	0.61	(2.78, 3.35)	<.0001

PY= person-years

RD= risk difference

IR= incidence rate

IRD= incidence rate difference

Medical Product	New Users	PY at Risk	Average PY at Risk	Events	IR per 1000 PY	Risk per 1000 New Users	IRD per 1000 PY	RD per 1000 New Users	Hazard Ratio (95% CI)	Wald P-Value
Unmatched .	Analysis (DP :	Site-adjuste	d only)							
ACEIs	1,838,853	348,838	0.19	2,345	6.72	1.28	3.98	0.81	2.54	<.0001
β-Blockers	1,330,298	225,875	0.17	619	2.74	0.47	5.96	0.81	(2.33, 2.78)	<.0001
1:1 Matched	Uncondition	al Analysis								
ACEIs	1,029,223	192,920	0.19	1,530	7.93	1.49	E 24	1 04	3.15	<.0001
β-Blockers	1,029,223	175,437	0.17	455	2.59	0.44	5.34	1.04	(2.83, 3.49)	<.0001
Stratified Pe	rcentile Analy	ysis								
ACEIs	1,838,853	348,838	0.19	2,345	6.72	1.28	2.00	0.01	3.05	<.0001
β-Blockers	1,330,298	225,875	0.17	619	2.74	0.47	3.98	0.81	(2.78, 3.35)	<.0001

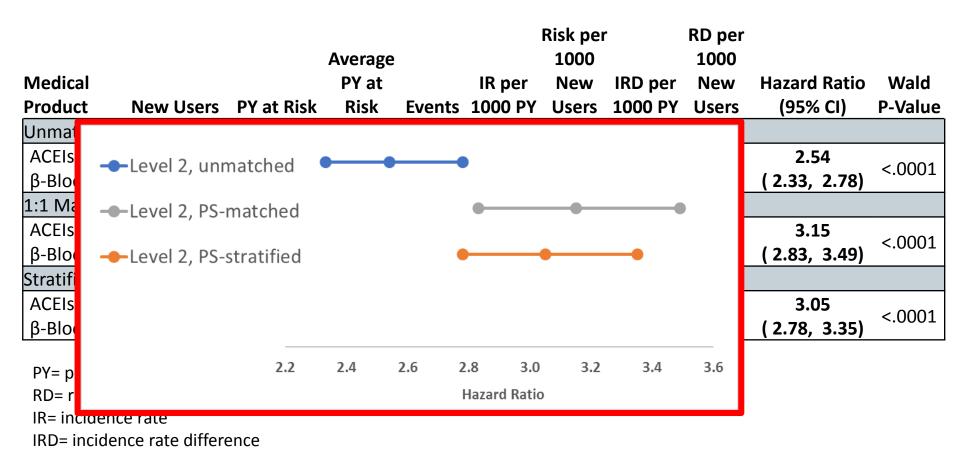
PY= person-years

RD= risk difference

IR= incidence rate

IRD= incidence rate difference

			Average			Risk per 1000		RD per 1000		
Medical			PY at		IR per	New	IRD per	New	Hazard Ratio	Wald
Product	New Users	PY at Risk	Risk	Events	1000 PY	Users	1000 PY	Users	(95% CI)	P-Value
Unmatched.	Analysis (DP	Site-adjuste	d only)							
ACEIs	1,838,853	348,838	0.19	2,345	6.72	1.28	3.98	0.81	2.54	<.0001
β-Blockers	1,330,298	225,875	0.17	619	2.74	0.47	3.90	0.81	(2.33, 2.78)	<.0001
1:1 Matched	Uncondition	nal Analysis								
ACEIs	1,029,223	192,920	0.19	1,530	7.93	1.49	E 24	1.04	3.15	<.0001
β-Blockers	1,029,223	175,437	0.17	455	2.59	0.44	5.34	1.04	(2.83, 3.49)	<.0001
Stratified Pe	rcentile Anal	ysis								
ACEIs	1,838,853	348,838	0.19	2,345	6.72	1.28	3.98	0.81	3.05	<.0001
β-Blockers	1,330,298	225,875	0.17	619	2.74	0.47	5.96	0.81	(2.78, 3.35)	<.0001

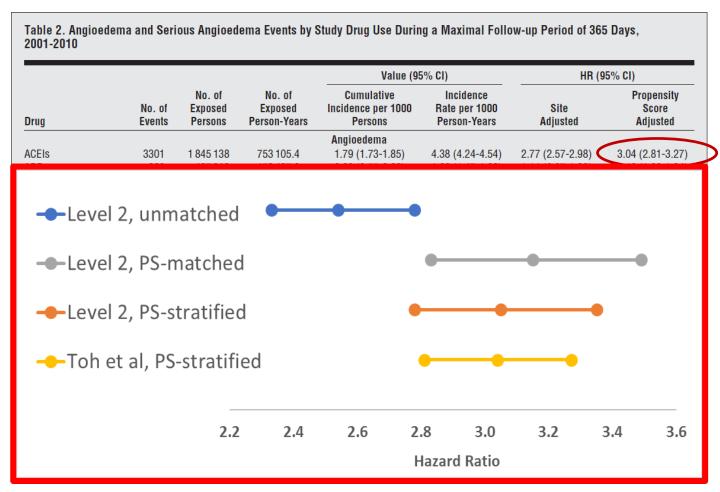

PY= person-years

RD= risk difference

IR= incidence rate

IRD= incidence rate difference

Effect Estimates with Tool Comparable to Previous Studies


Table 2. Angioedema and Serious Angioedema Events by Study Drug Use During a Maximal Follow-up Period of 365 Days, 2001-2010

				Value (95	5% CI)	HR (95	5% CI)
Drug	No. of Events	No. of Exposed Persons	No. of Exposed Person-Years	Cumulative Incidence per 1000 Persons	Incidence Rate per 1000 Person-Years	Site Adjusted	Propensity Score Adjusted
				Angioedema			
ACEIS	3301	1 845 138	753 105.4	1.79 (1.73-1.85)	4.38 (4.24-4.54)	2.77 (2.57-2.98)	3.04 (2.81-3.27)
ARBs	288	467 313	173 437.9	0.62 (0.55-0.69)	1.66 (1.47-1.86)	1.11 (0.97-1.28)	1.10 (1.00 1.34)
Candesartan	4	12 286	4177.0	0.33 (0.09-0.83)	0.96 (0.26-2.45)	0.91 (0.34-2.43)	0.95 (0.35-2.55)
Eprosartan	0	1165	392.3				
Irbesartan	24	44 094	15 997.7	0.54 (0.35-0.81)	1.50 (0.96-2.23)	1.05 (0.70-1.58)	1.11 (0.73-1.67)
Losartan potassium	94	106 522	41 230.2	0.88 (0.71-1.08)	2.28 (1.84-2.79)	1.48 (1.20-1.84)	1.53 (1.23-1.90)
Olmesartan	39	92 973	30 170.1	0.42 (0.30-0.57)	1.29 (0.92-1.77)	0.84 (0.60-1.16)	0.88 (0.63-1.22)
Telmisartan	11	26 530	8177.9	0.42 (0.21-0.74)	1.35 (0.67-2.41)	0.83 (0.45-1.50)	0.86 (0.47-1.56)
Valsartan	110	183 743	69 397.0	0.60 (0.49-0.72)	1.59 (1.30-1.91)	1.04 (0.85-1.28)	1.08 (0.88-1.34)
Aliskiren	7	4867	1498.1	1.44 (0.58-2.96)	4.67 (1.88-9.63)	2.75 (1.30-5.81)	2.85 (1.34-6.04)
β-Blockers	915	1 592 278	548 684.3	0.58 (0.54-0.61)	1.67 (1.56-1.78)	1 [Reference]	1 [Reference]
			5	Serious Angioedema			
ACEIs	326	1 845 138	753 581.4	0.18 (0.16-0.20)	0.43 (0.39-0.48)	4.42 (3.29-5.96)	4.91 (3.62-6.65)
ARBs	10	467 313	173 511.8	0.02 (0.01-0.04)	0.06 (0.03-0.11)	0.52 (0.26-1.05)	0.56 (0.28-1.14)
Candesartan	0	12 286	4178.5	,			,
Eprosartan	0	1165	392.3				
Irbesartan	0	44 094	16 002.4				
Losartan	3	106 522	41 255.2	0.03 (0.01-0.08)	0.07 (0.02-0.21)	0.97 (0.30-3.18)	1.01 (0.31-3.34)
Olmesartan	1	92 973	30 179.7	0.01 (0.00-0.06)	0.03 (0.00-0.19)	0.80 (0.10-6.20)	0.83 (0.11-6.57)
Telmisartan	0	26 530	8180.2				
Valsartan	6	183 743	69 425.1	0.03 (0.01-0.07)	0.09 (0.03-0.19)	1.05 (0.43-2.56)	1.14 (0.46-2.82)
Aliskiren	1	4867	1499.4	0.21 (0.01-1.14)	0.67 (0.03-3.72)	8.67 (1.11-67.62)	8.84 (1.13-69.41
β-Blockers	51	1 592 278	548 953.6	0.03 (0.02-0.04)	0.09 (0.07-0.12)	1 [Reference]	1 [Reference]

Toh et al. Comparative Risk for Angioedema Associated With the Use of Drugs That Target the Renin-Angiotensin-Aldosterone System. *Arch Intern Med.* 2012;172:1582-1589

Effect Estimates with Tool Comparable to Previous Studies

Toh et al. Comparative Risk for Angioedema Associated With the Use of Drugs That Target the Renin-Angiotensin-Aldosterone System. *Arch Intern Med*. 2012;172:1582-1589

Summary

- The Sentinel Propensity Score Analysis Tool builds in two propensity score methods – matching and stratification
 - Generalizability: matched versus entire user cohorts
 - Precision in effect estimates
- Standard outputs include
 - Simple diagnostics
 - Hazard ratios and 95% confidence intervals
- Always ready to use in data formatted to Sentinel Common Data Model
- Program packages are publicly available

ARTICLES

Successful Comparison of US Food and Drug Administration Sentinel Analysis Tools to Traditional Approaches in Quantifying a Known Drug-Adverse Event Association

JJ Gagne¹, X Han², S Hennessy², CE Leonard², EA Chrischilles³, RM Carnahan³, SV Wang¹, C Fuller⁴, A Iyer⁴, H Katcoff⁴, TS Woodworth⁴, P Archdeacon⁵, TE Meyer⁶, S Schneeweiss¹ and S Toh⁴

The US Food and Drug Administration's Sentinel system has developed the capability to conduct active safety surveillance of marketed medical products in a large network of electronic healthcare databases. We assessed the extent to which the newly developed, semiautomated Sentinel Propensity Score Matching (PSM) tool could produce the same results as a customized protocol-driven assessment, which found an adjusted hazard ratio (HR) of 3.04 (95% confidence interval [CI], 2.81–3.27) comparing angioedema in patients initiating angiotensin-converting enzyme (ACE) inhibitors vs. beta-blockers. Using data from 13 Data Partners between 1 January 2008, and 30 September 2013, the PSM tool identified 2,211,215 eligible ACE inhibitor and 1,673,682 eligible beta-blocker initiators. The tool produced an HR of 3.14 (95% CI, 2.86–3.44). This comparison provides initial evidence that Sentinel analytic tools can produce findings similar to those produced by a highly customized protocol-driven assessment.

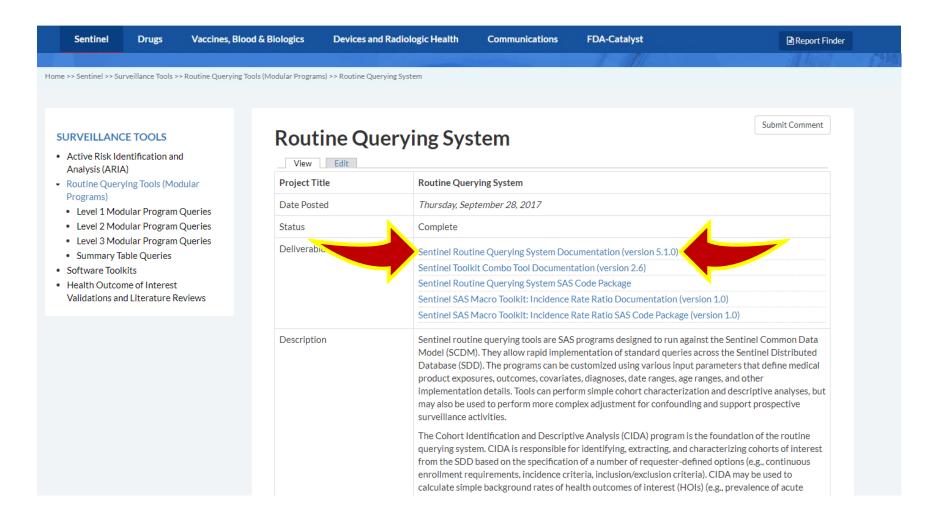
Gagne et al. Clin Pharmacol Ther. 2016 Nov; 100(5):558-564.

Questions?

Break

Self-Controlled Risk Interval Tool

Justin Bohn, ScD¹



SENTINEL MODULAR PROGRAMS

Querying Tools: Overview of Functionality and Technical

Documentation

criteria, doesn't meet enrollment requirements, etc.), the 4th index date is still eligible for inclusion when only the first valid index date per individual during the query period is requested.

SELF-CONTROLLED RISK INTERVAL (SCRI) DESIGN COHORT IDENTIFICATION STRATEGY

The self-controlled risk interval (SCRI) design cohort identification strategy defines new use of a medical product of interest, identifies a risk and control window relative to exposure, and examines the occurrence of HOIs. Risk and control windows may be of the same or different duration, and the control window may be specified before exposure or after the risk window. To avoid bias by contraindication, requesters specifying a control window before exposure should have confidence that the occurrence of an HOI does not influence receipt of treatment.³

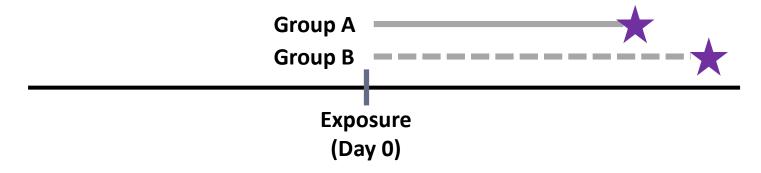
Two cohorts are identified using the self-controlled design: an exposure cohort and an analytic cohort. The exposure cohort includes patients with the exposure of interest that meet cohort inclusion criteria; the analytic cohort is a subset of the exposure cohort that includes patients that also have an HOI during the risk and/or control windows and sufficient post-exposure continuous enrollment.

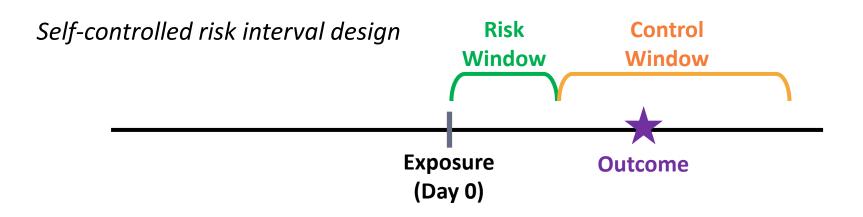
Agenda

- ARIA workflow
- Level 2 capabilities in ARIA
- Case study: Contrast MRI/MRA and seizure
- SCRI design
 - Defining a cohort
 - Choosing risk and control windows
 - Analysis
- Differentiating case-only designs

ARIA Workflow

- ARIA is Sentinel's routine query/analysis framework
 - Active Risk Identification and Analysis
 - Modular SAS programs identify populations of interest, characterize them, and perform comparative assessments
 - No new code needs to be written
- ARIA performs three levels of analysis
 - Level 1: descriptive or comparative without adjustment
 - Level 2: comparative, with adjustment
 - Level 3: comparative, with adjustment and sequential monitoring


Level 2 Capabilities in ARIA

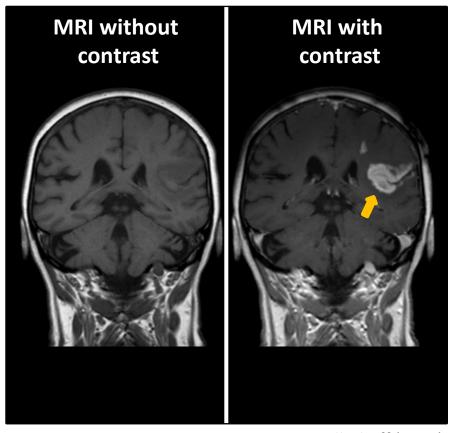

- Propensity score matching and stratification
 - New user cohort design
 - Explicit control of non-time-varying confounding
 - Observational analogue of RCT
 - Asks "why does this happen to them?"
- Self-controlled risk interval (SCRI)
 - New user, case-only design
 - Implicit control of non-time-varying confounding
 - Useful for studying acute effects of intermittent exposures
 - Asks "why does this happen <u>now?"</u>

Motivating the SCRI Design

New user cohort design

Motivating the SCRI Design

- Self-Controlled Risk Interval
 - Created to study vaccine safety
 - Special case of Self-Controlled Case Series method
- Several relevant issues
 - Lack of appropriate comparator group
 - Events are rare
 - Pooling of multiple data sources may be required
- Need a design that is
 - Self-controlled: no between-person confounding
 - **Efficient**: does not require follow-up of large # of patients
 - Privacy-preserving: can be performed on aggregated data from multiple sources without identifying patients


Case Study: Contrast MRI/MRA* and Seizure

*Magnetic resonance imaging/angiography

Contrast MRI

- Gadolinium (Gd) is a rare earth metal
 - Paramagnetic at room temperature
- Commonly used in MRI contrast agents to enhance images
 - "Picture Juice"
- Contrast agent injected prior to scan

P. Hellerhoff (2010)

Contrast MRI and Seizures

- Concern about seizure triggering
 - Biologically plausible¹
 - Evidence from animal studies²
 - Limited clinical evidence³⁻⁴
 - Series of 183 FDA Adverse Event Reporting System (FAERS) reports of seizure within one hour of contrast MRI⁵
 - Some seizures were fatal

¹ Montagne A et al. JAMA Neurol 2016;73(1):13-14.

² Muldoon LL et al. Radiology 2015;277(3):925-6.

³ Ray DE et al. AJNR Am J Neuroradiol 1996;17(2):365-73.

⁴ Kapoor R et al. Pain Physician 2010;13(5):E321-6.

⁵ Safriel Y et al. AJNR Am J Neuroradiol 2006;27(6):1194-7.

Radiology. 2015 Jun;275(3):772-82. doi: 10.1148/radiol.15150025. Epub 2015 Mar 5.

Intracranial Gadolinium Deposition after Contrast-enhanced MR Imaging.

McDonald RJ¹, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ.

Author information

Abstract

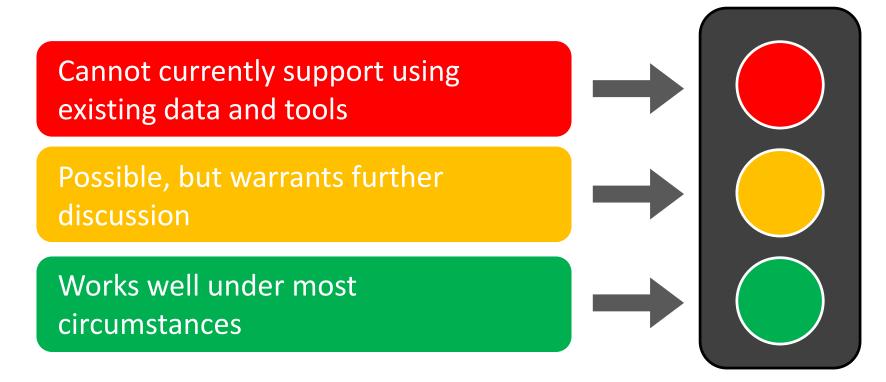
PURPOSE: To determine if repeated intravenous exposures to gadolinium-based contrast agents (GBCAs) are associated with neuronal tissue deposition.

MATERIALS AND METHODS: In this institutional review board-approved single-center study, signal intensities from T1-weighted magnetic resonance (MR) images and postmortem neuronal tissue samples from 13 patients who underwent at least four GBCA-enhanced brain MR examinations between 2000 and 2014 (contrast group) were compared with those from 10 patients who did not receive GBCA (control group). Antemortem consent was obtained from all study participants. Neuronal tissues from the dentate nuclei, pons, globus pallidus, and thalamus of these 23 deceased patients were harvested and analyzed with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy, and light microscopy to quantify, localize, and assess the effects of gadolinium deposition. Associations between cumulative gadolinium dose, changes in T1-weighted MR signal intensity, and ICP-MS-derived tissue gadolinium concentrations were examined by using the Spearman rank correlation coefficient (ρ).

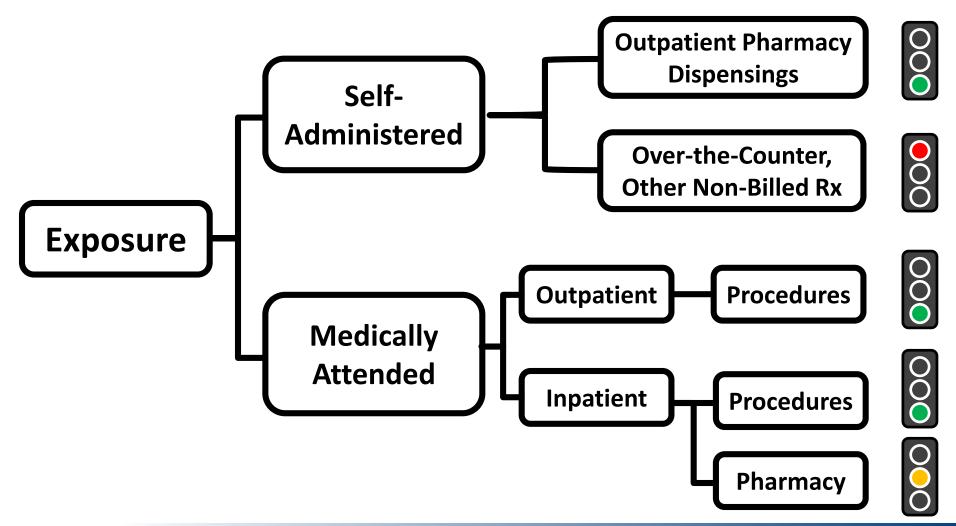
RESULTS: Compared with neuronal tissues of control patients, all of which demonstrated undetectable levels of gadolinium, neuronal tissues of patients from the contrast group contained 0.1-58.8 μg gadolinium per gram of tissue, in a significant dose-dependent relationship that correlated with signal intensity changes on precontrast T1-weighted MR images (ρ = 0.49-0.93). All patients in the contrast group had relatively normal renal function at the time of MR examination. Gadolinium deposition in the capillary endothelium and neural interstitium was observed only in the contrast group.

CONCLUSION: Intravenous GBCA exposure is associated with neuronal tissue deposition in the setting of relatively normal renal function. Additional studies are needed to investigate the clinical significance of these findings and the generalizability to other GBCAs. Online supplemental material is available for this article.

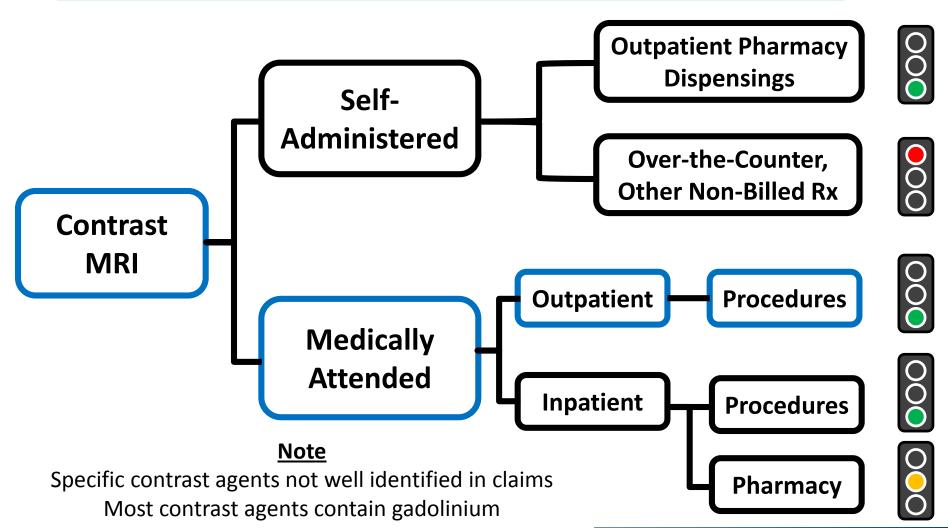
RSNA, 2015



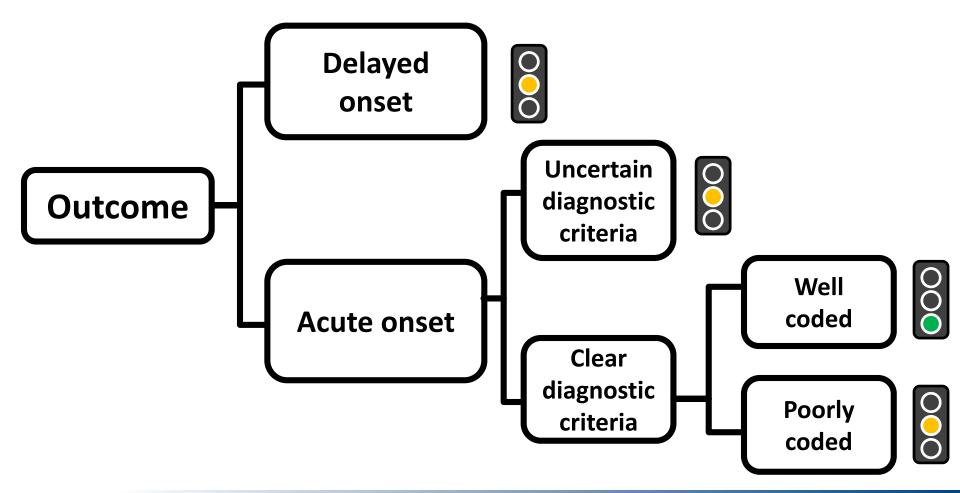
Assessing ARIA Sufficiency for SCRI


Recall the Framework

- Stoplight provided as simple metric
- Describes Sentinel's current capabilities to support specific topics

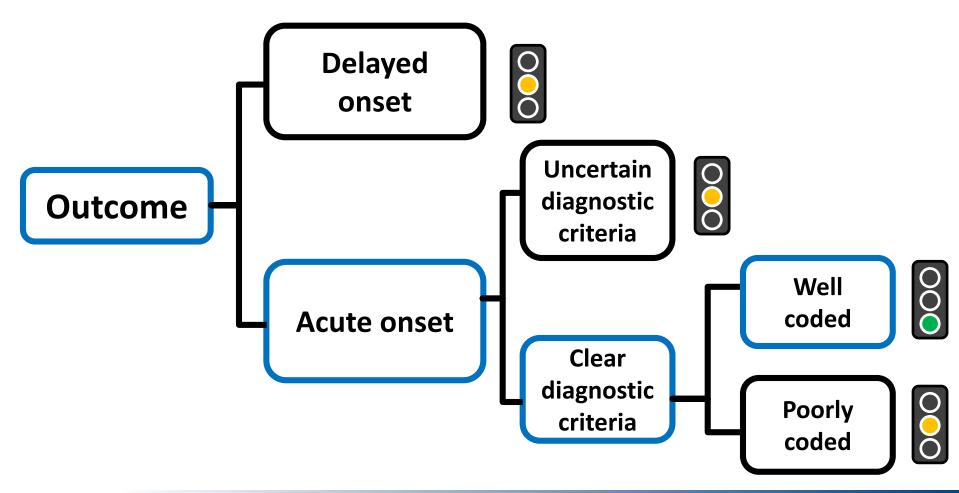

Exposure Sufficiency

Contrast MRI is a medically-attended outpatient procedure with well-defined administrative codes


Case Study: Cohort-Defining Exposure

- Four exposures categories of interest
 - Contrast MRI/MRA during ambulatory visit
 - Any type
 - Non-extremity (e.g., pelvis, torso, head/neck)
 - Extremity (e.g., arm, leg)
 - Non-contrast MRI/MRA during ambulatory visit
 - Negative control exposure
- All defined by procedure codes during an ambulatory visit
- SCRI analysis run separately for each category

info@sentinelsystem.org


Outcome Sufficiency

Seizure is an acute-onset event with clear diagnostic criteria and well-defined administrative codes

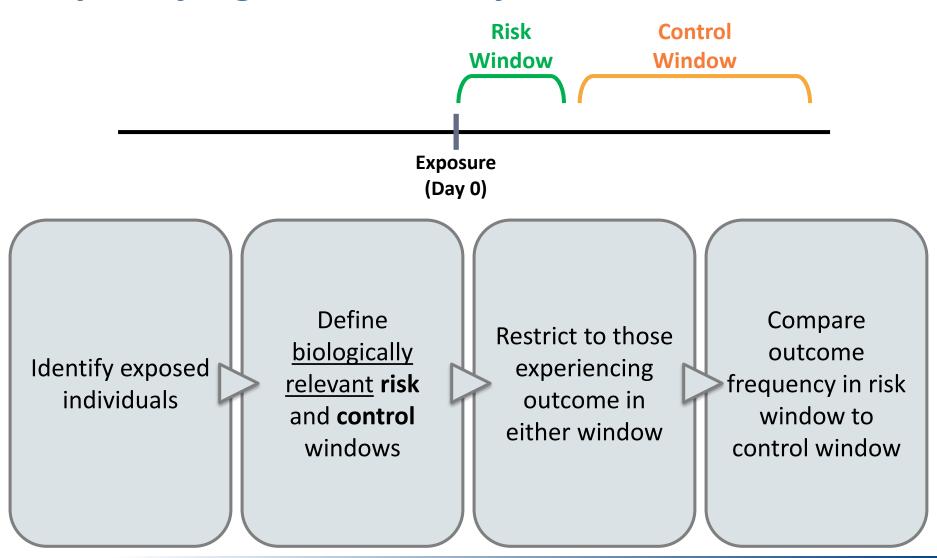
Case Study: Outcome Definition

- Seizure, defined in ICD as:
 - Epilepsy (345, 345.X, 345.XX, some ICD-10 G40 codes), or
 - Convulsion (780.3, 780.3X, R56.00, R56.01, R56.9)
- In either of two care settings
 - Emergency department visit
 - Inpatient stay (as primary diagnosis)
- PPV for confirmed seizure 79%-99%
- First in prior 183 days
 - Outcome incidence relative to itself, <u>not exposure</u>

When to Use a SCRI Design

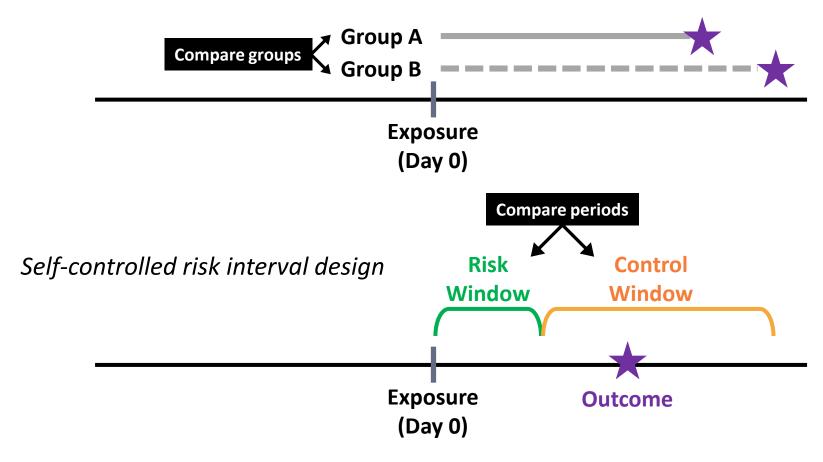
- Exposure must be
 - Fixed event
 - Identifiable in claims
 - Accurately dated
- Outcome must be
 - Acute onset
 - Identifiable in claims
 - Accurately dated

Bad Examples


- Continuous use of a drug
- OTC products
- Procedure/diagnosis during hospitalization
- Parkinson's disease
- Cause-specific mortality
- Procedure/diagnosis during hospitalization

SCRI Design

Specifying a SCRI Study


SCRI and Confounding

- Comparison is between periods, not persons
- Each patient serves as own control
 - Adjusts for measured and unmeasured confounders that don't vary over time
- Susceptible to time-varying confounding
 - Seasonality in exposure <u>and</u> outcome
 - Relatively small changes in age among children
 - Common triggers of exposure <u>and</u> outcome
 - E.g., PPSV before splenectomy

SCRI and Confounding

New user cohort design

Contrast MRI and Seizure: Why SCRI?

- Want to know if contrast MRI triggers seizures
 - Acute outcome occurrence
 - Risk window → day of MRI
- Issues identifying comparator group
 - In cohort, who would serve as unexposed?
 - Comparison to non-scanned not possible in ARIA
- If contrast MRI is triggering, should see higher incidence soon after scan

Defining a Cohort

Traditional components

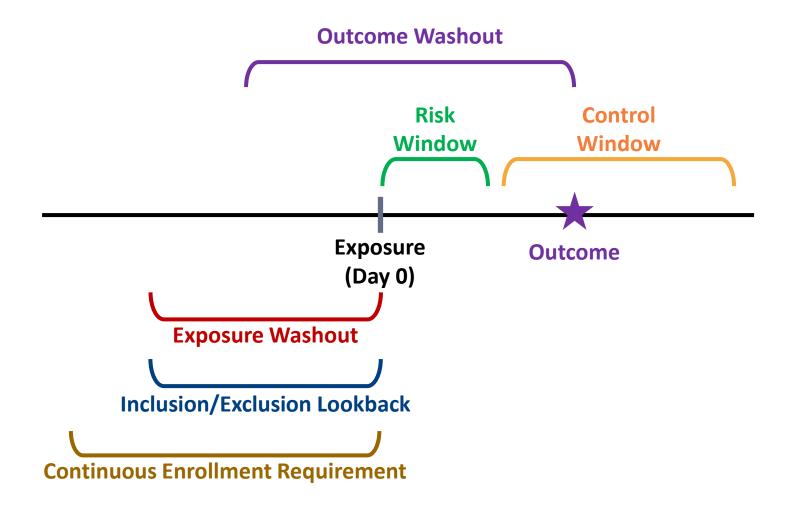
- Study period
- Cohort-defining exposure
 - Washout period
- Baseline period
 - Inclusion criteria
 - Exclusion criteria
- Outcome definition
 - Incidence criteria

SCRI-specific components

- Risk window
 - Start
 - End
- Control window
 - Start
 - End

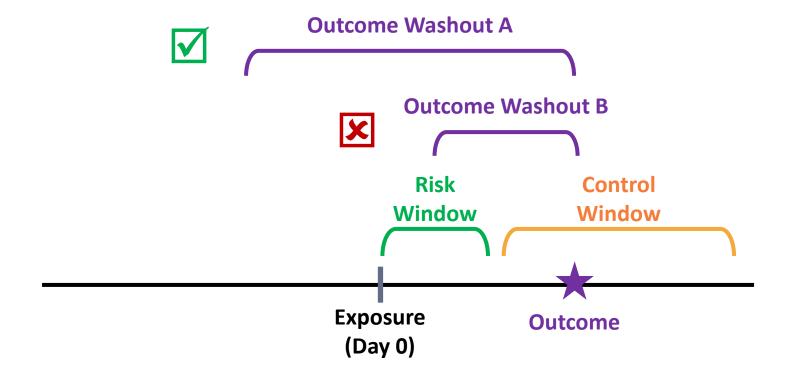
Case Study: Inclusion/Exclusion Criteria

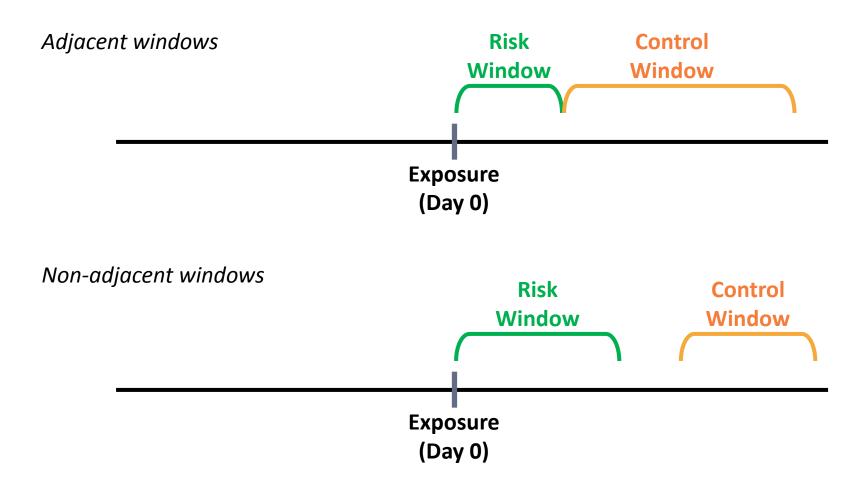
Inclusion


- Cohort-defining exposure (MRI/MRA) during 2008-2016
- Age ≥ 2 years at MRI/MRA
- Continuous enrollment for ≥ 183 days before MRI/MRA

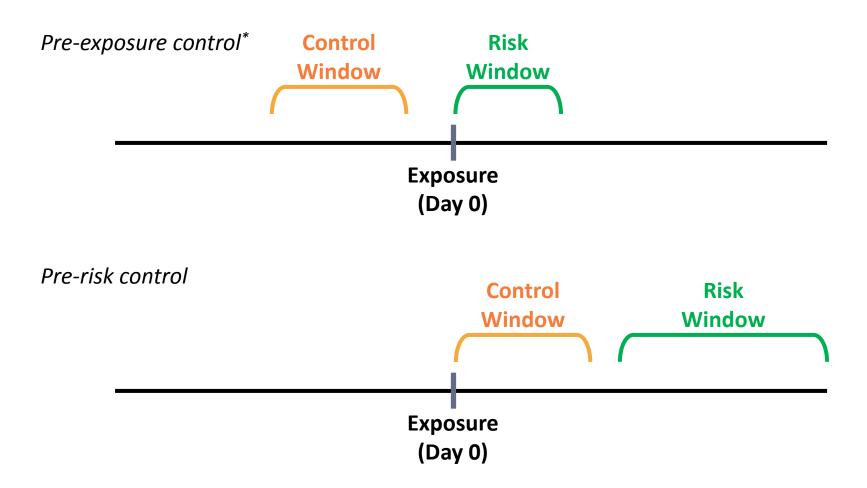
Exclusion

- Same day scan
 - Head MRI or head CT
- History in 183 days MRI/MRA of:
 - MRI/MRA, seizures, epilepsy, antiepileptic drug use, myocardial infarction, stroke, syncope, brain tumor, Alzheimer's, Autism, overdose, head injury, brain compression, kidney disease, or drug dependency

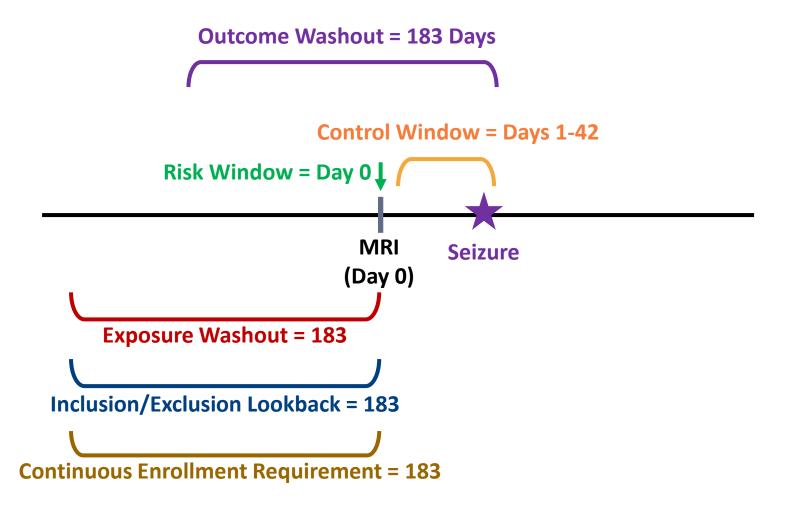

Defining SCRI Input Parameters in ARIA


Minimum Outcome Washout Periods

 In order to prevent patients from contributing events in both the risk and control windows, need appropriate washout



Window Placement


Window Placement

*Must ensure outcome doesn't affect probability of subsequent exposure

Input Parameters for our SCRI Study

Results of SCRI Analysis

- For each exposure level, output data on two cohorts
- An exposure cohort for characterization
 - All patients meeting inclusion/exclusion/exposure criteria
 - "Table 1" of pre-exposure baseline characteristics
- An analytic cohort for effect estimation
 - Patients from exposure cohort with outcome in risk or control window
 - Event counts and incidence rate ratio estimates
 - Histogram of event times

Characterizing the Exposure Cohort

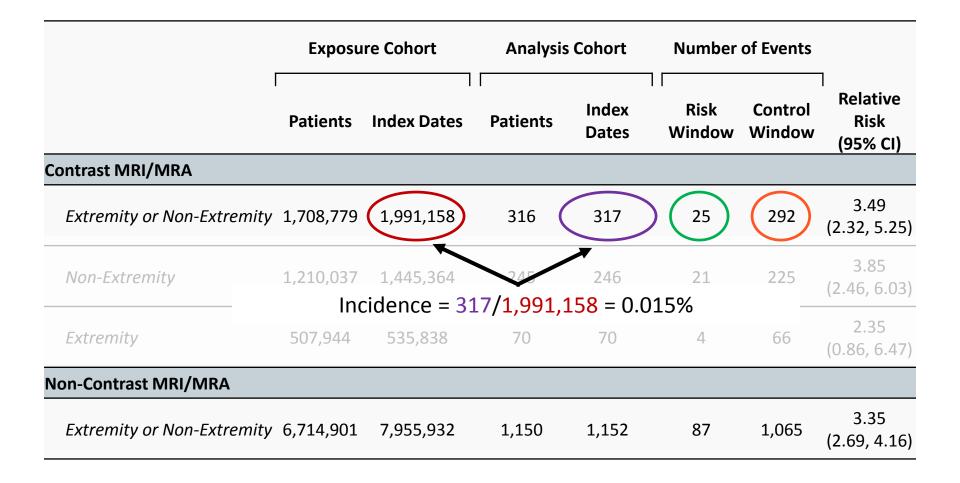
Single "Table 1" returned per exposure group

Characterizes *all* exposed patients meeting eligibility criteria

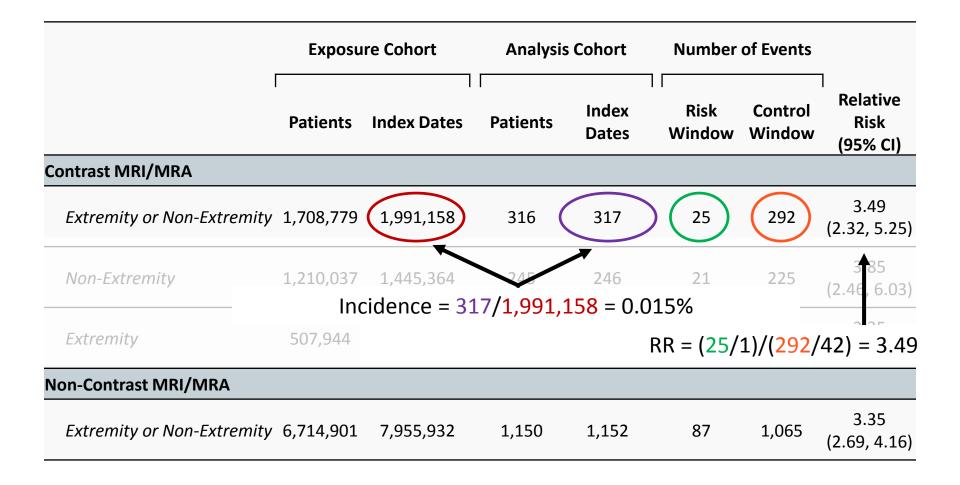
Only a subset of these will be included in SCRI analysis

Characteristic	Contrast MRI/ MRA			
	N/Mean %/Std Dev			
Number of unique patients	1,708,779	100.0%		
Patient Characteristics				
Mean age	49.5	16		
Gender (Female)	1,030,234	60.3%		
Recorded History of				
Diabetes Mellitus	175,123	10.2%		
Hypertension	463,701	27.1%		
Major Surgery	54,308	3.2%		
History of Use				
Antihypertensive Medications	351,479	20.6%		
Diuretics	147,038	8.6%		
Oral Antidiabetic Medications	107,862	6.3%		
Health Service Utilization Intensity				
Mean number of ambulatory encounters	8.6	7.9		
Mean number of filled prescriptions	9.3	10.5		

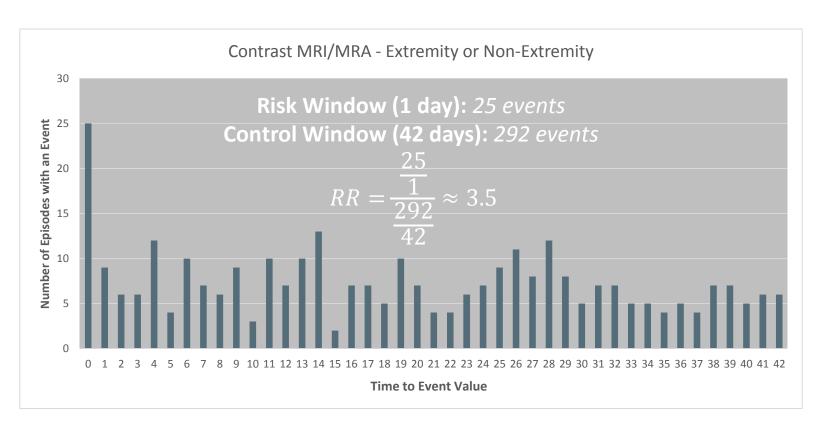
	Exposu	e Cohort Analysis Cohort		Number of Events		_	
	Patients	Index Dates	Patients	Index Dates	Risk Window	Control Window	Relative Risk (95% CI)
Contrast MRI/MRA							
Extremity or Non-Extremity	1,708,779	1,991,158	316	317	25	292	3.49 (2.32, 5.25)
Non-Extremity	1,210,037	1,445,364	245	246	21	225	3.85 (2.46, 6.03)
Extremity	507,944	535,838	70	70	4	66	2.35 (0.86, 6.47)
Non-Contrast MRI/MRA							
Extremity or Non-Extremity	6,714,901	7,955,932	1,150	1,152	87	1,065	3.35 (2.69, 4.16)

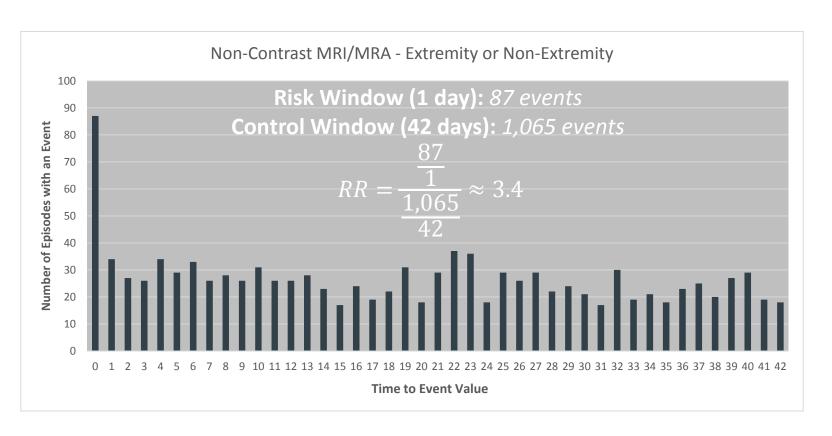


	Exposure Cohort		Analysis	lysis Cohort Numbe		of Events	
	Patients	Index Dates	Patients	Index Dates	Risk Window	Control Window	Relative Risk (95% CI)
Contrast MRI/MRA							·
Extremity or Non-Extremity	1,708,779	1,991,158	316	317	25	292	3.49 (2.32, 5.25)
Non-Extremity	1,210,037	1,445,364	245	246	21	225	3.85 (2.46, 6.03)
Extremity	507,944	535,838	70	70	4	66	2.35 (0.86, 6.47)
Non-Contrast MRI/MRA							
Extremity or Non-Extremity	6,714,901	7,955,932	1,150	1,152	87	1,065	3.35 (2.69, 4.16)



	Exposure Cohort		Analysis	Analysis Cohort		Number of Events	
	Patients	Index Dates	Patients	Index Dates	Risk Window	Control Window	Relative Risk (95% CI)
Contrast MRI/MRA							
Extremity or Non-Extremity	1,708,779	1,991,158	316	317	25	292	3.49 (2.32, 5.25)
Non-Extremity		1,445,364	242	246	21	225	3.85 (2.46, 6.03)
Extremity	507,944	535,838	1 //1,991, 1 70	70 70	015% 4	66	2.35 (0.86, 6.47)
Non-Contrast MRI/MRA							(0.00) 0.17)
Extremity or Non-Extremity	6,714,901	7,955,932	1,150	1,152	87	1,065	3.35 (2.69, 4.16)




Distribution of Events

Contrast MRI/MRA associated with 3.5-fold increase in rate of seizure

Distribution of Events

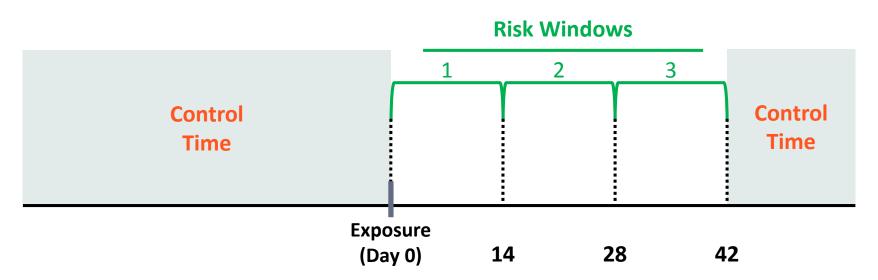
Non-contrast MRI/MRA associated with 3.4-fold increase in rate of seizure

Case Study Summary

- Outcome is very rare → SCRI advantageous
- Rate of seizure 3.5x higher on day of contrast MRI/MRA than in following 42 days
 - Effect nearly same for non-contrast MRI/MRA
- Suggests gadolinium-based contrast agents not primary driver of increase in seizure rate

Differentiating Case-Only Designs

Case-Crossover Design



- Step 1: Identify all individuals experiencing the outcome during the study period
- **Step 2:** Define an **effect period** preceding the outcome
- **Step 3:** Define a **control period** relative to the outcome
- **Step 4:** Compare the exposure statuses in the effect period to that in the control period

RR = OR comparing odds of exposure in effect period to that in control period

Self-Controlled Case Series Design

- **Step 1:** Define 1 or more **risk windows** relative to exposure, when patients are at risk for an exposure-related outcome
- **Step 2:** Assign all other observation time to a control "window", which need not be continuous
- **Step 3:** Compare the outcome incidence in the risk window(s) to that in the control window (i.e., all other observed time)

Closing Remarks

- SCRI design is a simple analytic method
- Compares periods, not persons
 - Identifies windows of elevated risk associated with common medical interventions
- Results very sensitive to risk and control window choices
 - Can be mitigated with sensitivity analysis
- Rapid implementation in ARIA

Questions?

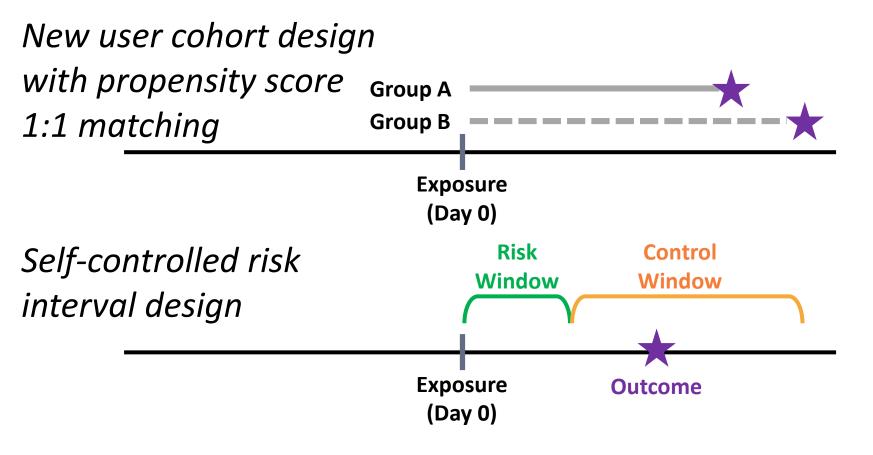
Lunch

TreeScan Analyses

Judith C. Maro, PhD, MS¹

TreeScan 101

What is


- A signal detection / data-mining method
- Automatically adjusts for multiple hypothesis testing
- Scans electronic health data that are grouped into hierarchical tree structures

http://www.treescan.org

TreeScan: Adding Multiple Outcomes to Designs for Exposure-Outcome Pairs

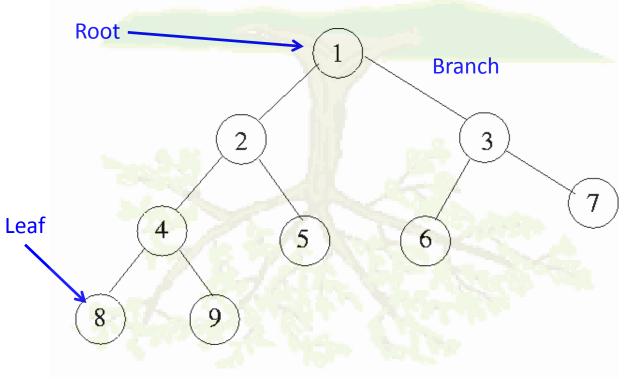
Data-Mining Designs with TreeScan

- Exposure-Oriented 1 Exposure: N Outcomes
 - Uses Multi-Level Clinical Classification System (MLCCS) where N=~8000

- Outcome-Oriented M Exposures: 1 Outcome
 - Uses Medi-Span Therapeutic Classification System (Drug Tree) where M=300,000+

Future - M Exposures: N Outcomes

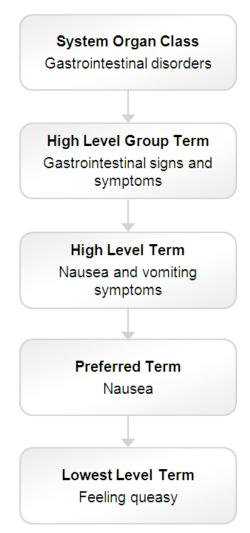
Data-Mining Designs with TreeScan


- Exposure-Oriented 1 Exposure: N Outcomes
 - Uses Multi-Level Clinical Classification System (MLCCS) where N=~8000

- Outcome-Oriented M Exposures: 1 Outcome
 - Uses Medi-Span Therapeutic Classification System (Drug Tree) where M=300,000+

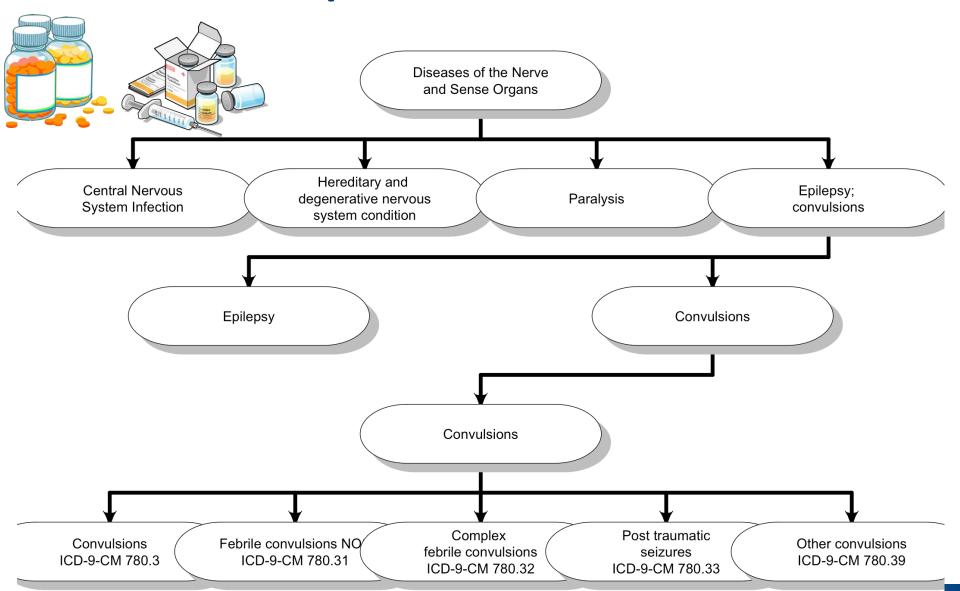
Future - M Exposures: N Outcomes

What is a Hierarchical Tree Structure?



Examples:

MedDRA reporting terms


Multi-level Clinical Classification System

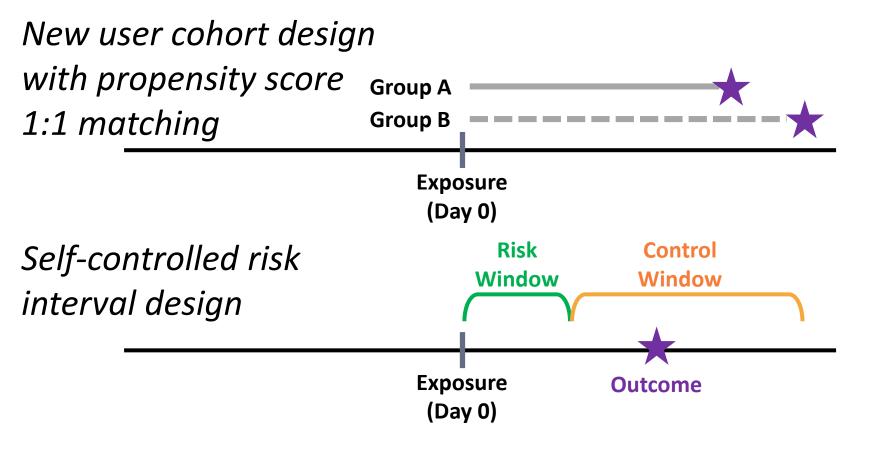
Medi-Span Therapeutic Classification System

What is an Exposure-Oriented Scan?

ir

TreeScan and FAERS: Similarities and Differences

How are TreeScan and FAERS alike?


- General Safety Net: No need to specify exposure-outcome pair of interest
- Hypothesis Generation: Both produce hypotheses that necessitate further investigation
- Tree Structure: Both use data structured in hierarchical trees

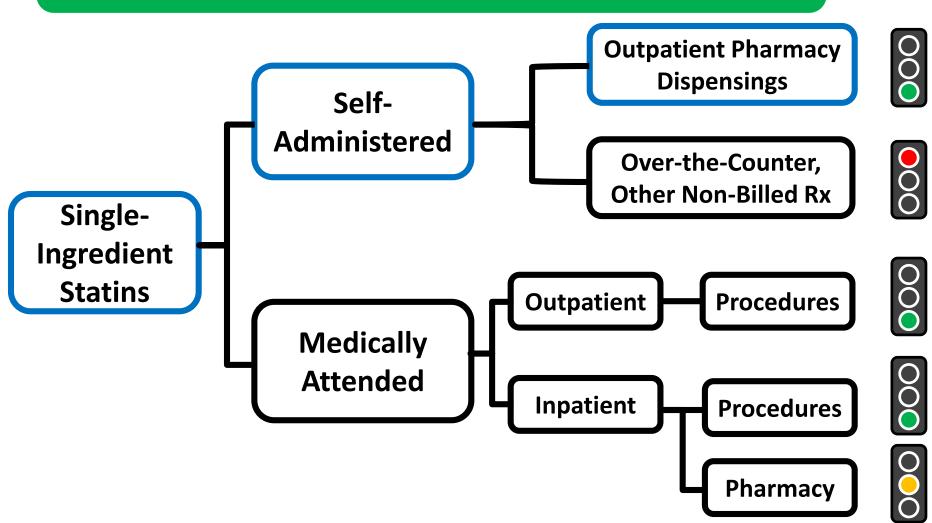
How are TreeScan and FAERS different?

- Different Data Sources: TreeScan utilizes longitudinal data and familiar epidemiological designs
- Different Analytic Datasets: TreeScan uses aggregated data and requires additional programs for patient-level returns

TreeScan: Adding Multiple Outcomes to Designs for Exposure-Outcome Pairs

Self-Controlled Risk Interval Design

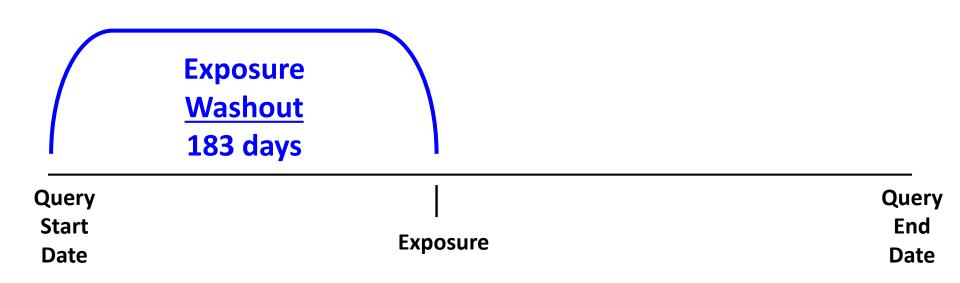
- Main Advantages
 - Controls for time-invariant confounding
 - Easy to implement
- Main Disadvantages
 - Vulnerable to time-varying confounding (requires stable clinical status)
 - Can miss a prolonged elevation of adverse event occurrence



Training Example: Monitoring Single-Ingredient Statins for 8000+ Outcomes using a Self-Controlled Risk Interval Design

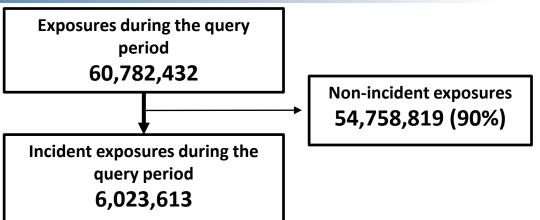
Statins are outpatient pharmacy dispensings

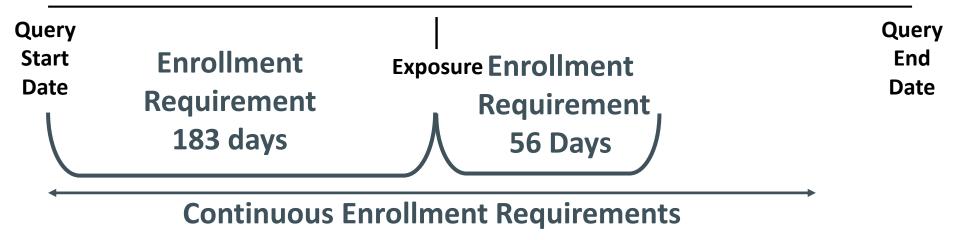
Why Single-Ingredient Statins?


- Simvastatin
- Atorvastatin (High Intensity)
- Pravastatin
- Rosuvastatin (High Intensity)
- Lovastatin
- Pitavastatin
- Fluvastatin

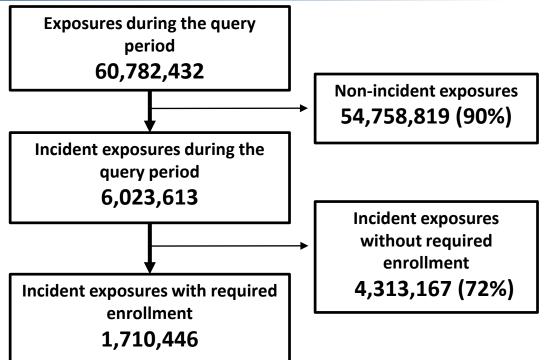
Statins have a large sample size and an established safety record.

TreeScan: Building a Cohort with a Self-Controlled Risk Interval Design




Find single-ingredient statin and check for incidence (no use in prior 183 days).

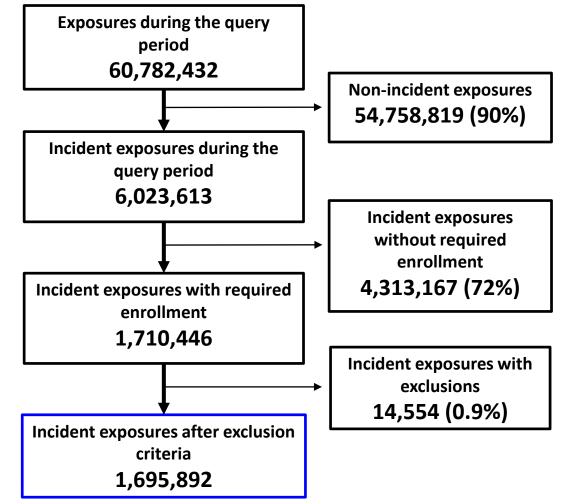
Simvastatin
Cohort
Attrition
in 35% of
Sentinel
Distributed
Database



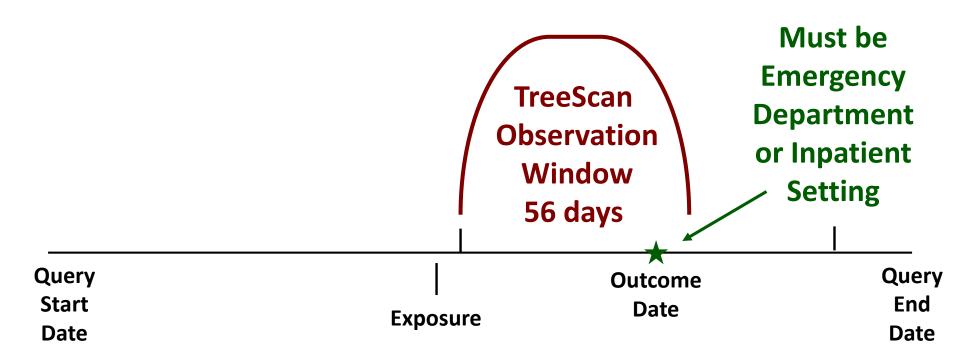
Check for required enrollment (183 + 1 + 56 = 240 days with medical and pharmacy)

Simvastatin Cohort Attrition in 35% of Sentinel Distributed Database

- Must be 18 years old on index date
- No recent history of Percutaneous Coronary Intervention (PCI), Coronary Artery Bypass Grafting (CABG), Coronary Thrombolysis

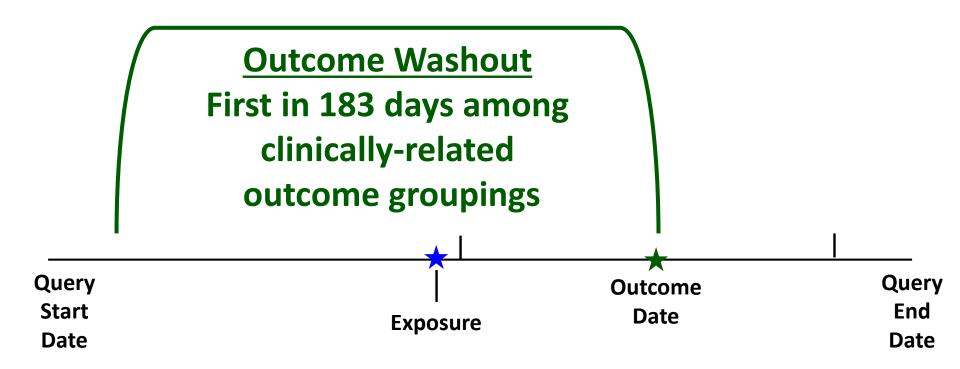

Check for inclusions (age) and exclusions (evidence of recent procedures).

Date

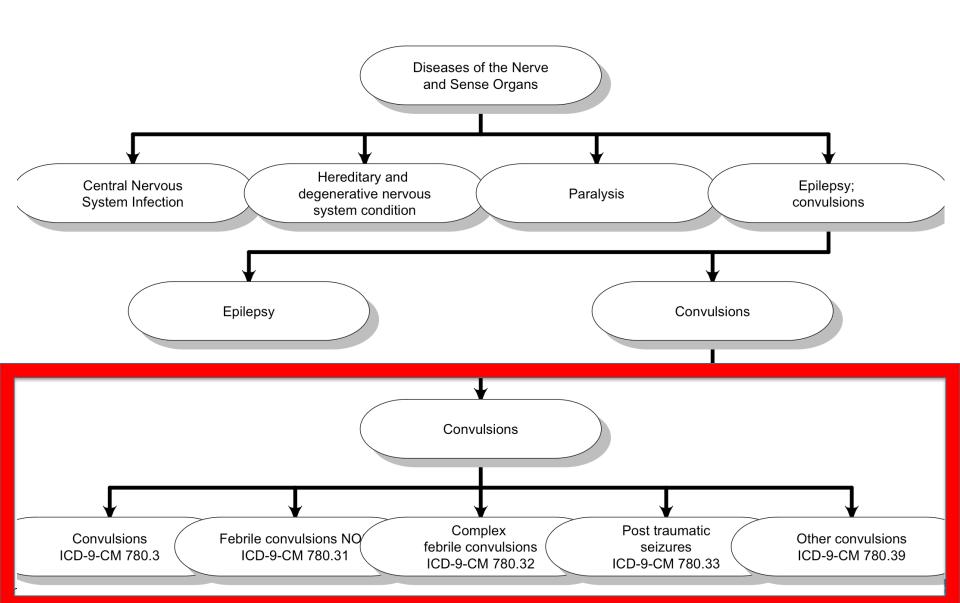


Simvastatin Cohort Attrition in 35% of Sentinel Distributed Database

Exposed Cohort

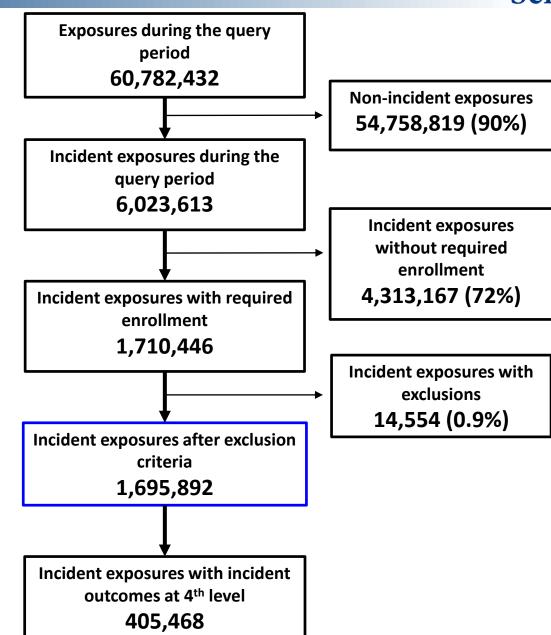


Find all potential outcomes in TreeScan Observation Window (1-56 days).



Check that outcome is incident with respect to the hierarchical tree.

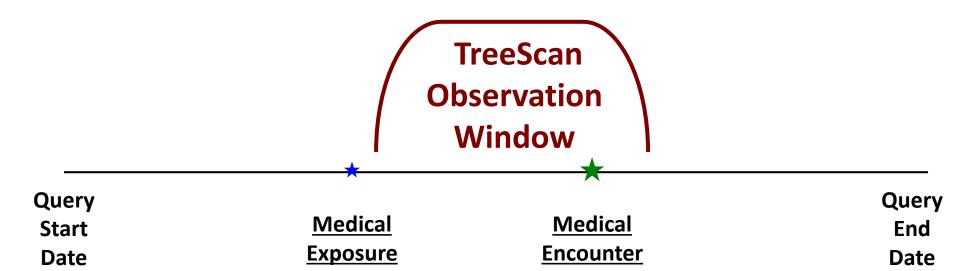
What is a Clinically-Related Grouping?



Simvastatin
Cohort
Attrition
in 35% of
Sentinel
Distributed
Database

Analytic Cohort

Exposed Cohort



But, You Haven't Selected the Risk Window!

 Simulations show you should not unless you clearly understand what it is

https://www.sentinelinitiative.org/sites/default/files/PRISM/TreeScanPower FinalReport.pdf

 With 8000+ outcomes, it's not possible to select a universal risk window

(ED)

But, You Haven't Selected the Risk Window!

 Simulations show you should not unless you clearly understand what it is

https://www.sentinelinitiative.org/sites/default/files/PRISM/TreeScanPower FinalReport.pdf

- With 8000+ outcomes, it's not possible to select a universal risk window
- So, we use a scanning risk window:

Query Start Date

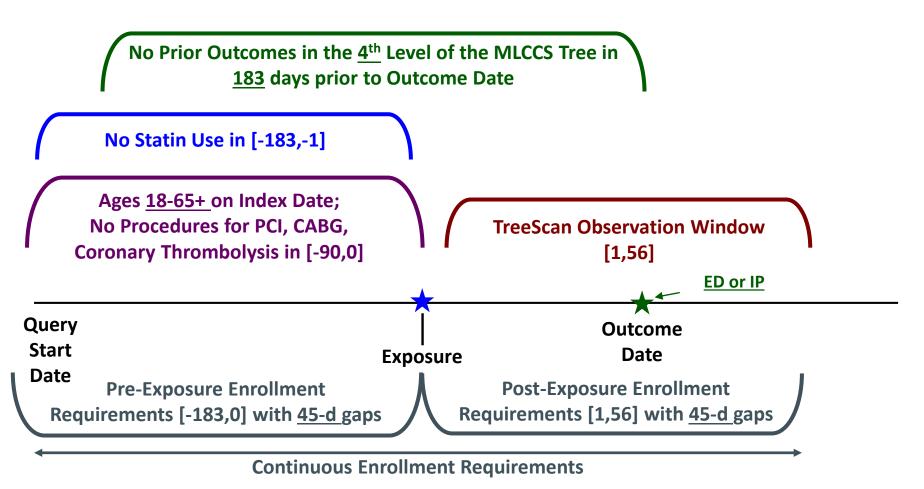
Medical Exposure Medical Encounter (ED) Query End Date

But, That's Thousands of Hypothesis Tests!

- Yes, it's 8000+ outcomes and outcome-related groupings multiplied by hundreds of risk windows
 - But they are highly-overlapping
- We account for all the multiple hypothesis testing using a Monte Carlo based method and a maximum likelihood test statistic.
 - NULL: There is no outcome or grouping of outcomes occurring during a particular risk window.
 - When we reject the null, we call that an "alert"

What is a TreeScan "Alert"?

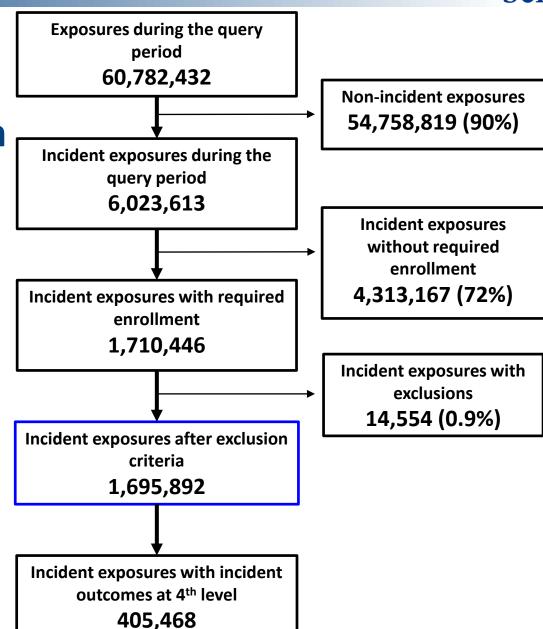
- A statistically significant finding of greater than expected occurrence of an exposure-outcome pair while controlling for multiple hypothesis testing
- An "Alert" is not a "Signal"
 - Use of the term "signal" has regulatory implications and is an FDA decision
 - May not contain "new safety information"
- An Alert requires further triage



How are Alerts Triaged?

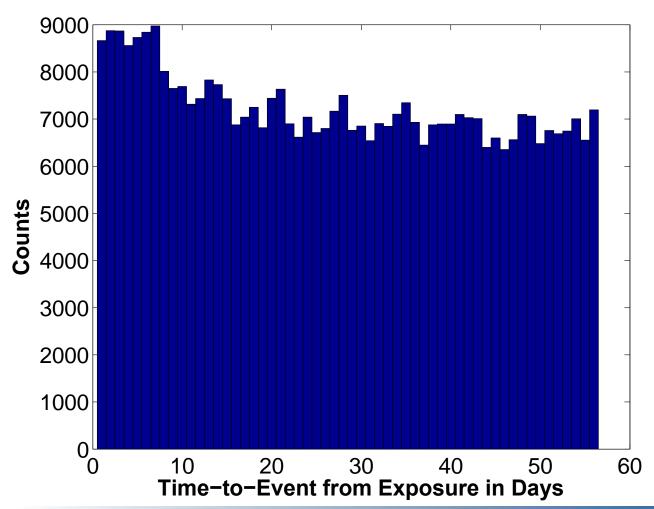
- Known Adverse Reaction or already in the label
 - Example: Various Vaccinations and Cellulitis / Rash
- Rule out possible Adverse Reactions due to time-varying confounding
 - Example: Pneumococcal Polysaccharide Vaccine and Spleen Surgery
- Narrow to list of possible Adverse Reactions that merit follow-up
 - Consider using alternative study mechanisms or tools

Statins Design Diagram Single Ingredient Statins Only


^{*}Not drawn to scale

Results

Simvastatin Cohort Attrition



Exposed Cohort

Analytic Cohort

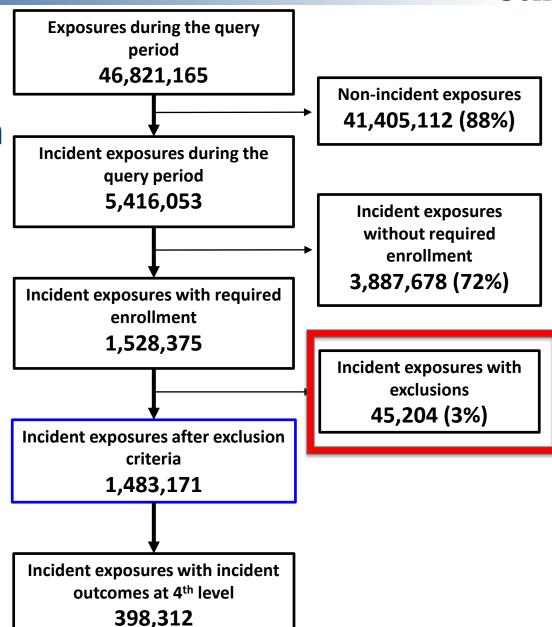
405,468 Incident Outcomes following New Simvastatin Use

Simvastatin Primary Results (11 alerts)

			Node					
					514	5 147		
Node	Node	Node	Outcomes	Relative	RW	RW	Test	Р
Name	ID	Outcomes	in RW	Risk	Start	End	Statistic	Value
Unstable angina (intermediate coronary syndrome)	07020402	2269	523	1.68	1	7	40.02701	0.0001
Intermediate Coronary Syndrome	4111	2269	523	1.68	1	7	40.02701	0.0001
Angina Pectoris	07020401	1408	377	1.77	1	8	32.471868	0.0001
Angina Pectoris NEC & NOS	4139	1353	360	1.76	1	8	30.19576	0.0001
Cardiac arrest and ventricular fibrillation	07021000	459	160	1.95	44	56	15.776195	0.0006
Cardiac Arrest	4275	307	106	2.61	47	56	21.913557	0.0001
Disorders of lipid metabolism	03060000	7449	2269	1.22	1	13	21.133046	0.0001
Other forms of chronic heart disease	07020405	5447	1676	1.24	1	13	17.869037	0.0001
Hemorrhage or hematoma complicating a procedure	16100205	990	227	1.67	1	7	16.958573	0.0002
Hematoma Complicating a Procedure	99812	451	113	2.25	1	6	19.953413	0.0001
Conditions associated with dizziness or vertigo	06080200	4633	628	1.3	1	5	15.334017	0.0011
Dizziness & Giddiness	7804	4210	578	1.32	1	5	15.663721	0.0006
Respiratory failure	08060100	3063	804	1.29	42	54	14.00441	0.0031
Surgical Complication-Peripheral Vascular	9972	121	40	3.32	1	6	13.141528	0.0099
Coronary atherosclerosis	07020404	6247	1243	1.2	1	8	13.138919	0.01
Lower extremity aneurysm	4423	82	28	4.29	1	5	13.127157	0.01

Simvastatin Primary Results (11 alerts)

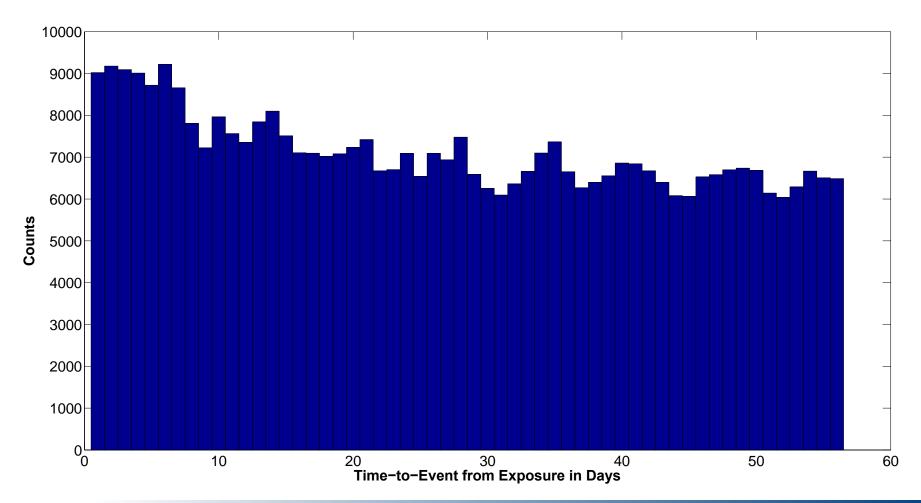
Node Name	Node ID	Node Outcomes	Node Outcomes in RW				Test Statistic	P Value
Unstable angina (intermediate coronary syndrome)	07020402	2269	523	1.68	1	7	40.02701	0.0001
Intermediate Coronary Syndrome	4111	2269	523	1.68	1	7	40.02701	0.0001



Simvastatin Primary Results (11 alerts)

Node	Node	Node	Node Outcomes	Relative	RW	RW	Test	Р
Name	ID	Outcomes	in RW	Risk	Start	End	Statistic	Value
Unstable angina (intermediate coronary syndrome)	07020402	2269	523	1.68	1	7	40.02701	0.0001
Intermediate Coronary Syndrome	4111	2269	523	1.68	1	7	40.02701	0.0001
Angina Pectoris	07020401	1408	377	1.77	1	8	32.471868	0.0001
Angina Pectoris NEC & NOS	4139	1353	360	1.76	1	8	30.19576	0.0001
Cardiac arrest and ventricular fibrillation	07021000	459	160	1.95	44	56	15.776195	0.0006
Cardiac Arrest	4275	307	106	2.61	47	56	21.913557	0.0001
Disorders of lipid metabolism	03060000	7449	2269	1.22	1	13	21.133046	0.0001
Other forms of chronic heart disease	07020405	5447	1676	1.24	1	13	17.869037	0.0001
Hemorrhage or hematoma complicating a procedure	16100205	990	227	1.67	1	7	16.958573	0.0002
Hematoma Complicating a Procedure	99812	451	113	2.25	1	6	19.953413	0.0001
vertigo	06080200	4633	628	1.3	1	5	15.334017	0.0011
Dizziness & Giddiness	7804	4210	578	1.32	1	5	15.663721	0.0006
Respiratory failure	08060100	3063	804	1.29	42	54	14.00441	0.0031
Surgical Complication-Peripheral Vascular	9972	121	40	3.32	1	6	13.141528	0.0099
Coronary atherosclerosis	07020404	6247	1243	1.2	1	8	13.138919	0.01
Lower extremity aneurysm	4423	82	28	4.29	1	5	13.127157	0.01

Atorvastatin Cohort Attrition



Exposed Cohort

Analytic Cohort

398,312 Incident Outcomes following New Atorvastatin Use

Atorvastatin Primary Results (8 alerts)

Node Name	Node ID	Node	Node Outcomes in RW		RW	RW	Test	P
	טו	Outcomes	III IVVV	NISK	Start	EIIU	Statistic	value
Unstable angina (intermediate coronary syndrome)	07020402	2293	986	1.67	1	15	45.805554	0.0001
Intermediate Coronary Syndrome	4111	2293	986	1.67	1	15	45.805554	0.0001
Disorders of lipid metabolism	03060000	6290	1240	1.32	1	7	28.4246	0.0001
Hyperlipidema NEC & NOS	2724	4561	986	1.28	1	8	17.953967	0.0002
Coronary atherosclerosis	07020404	5522	1794	1.29	1	13	25.951448	0.0001
Coronary atherosclerosis- Native Vessel	41401	2946	851	1.33	1	11	17.198595	0.0003
Lower extremity aneurysm	4423	100	45	5.19	1	6	22.402413	0.0001
Angina pectoris	07020401	1387	352	1.58	1	8	20.024826	0.0001
Angina Pectoris NEC & NOS	4139	1334	337	1.57	1	8	18.708754	0.0002
Hematoma complicating a procedure	99812	457	171	1.95	1	11	16.032192	0.0008
Cardiac arrest	4275	383	169	2.07	38	54	15.839396	0.0008
Respiratory failure	08060100	3594	1033	1.26	42	56	14.164177	0.0036

Atorvastatin Primary Results (8 alerts)

Node Name	Node	Node	Node Outcomes	Relative	RW	RW	Test	P
Unstable angina (intermed coronary syndrome)Intermediate Coronary S	070204					15 15	45.805554 45.805554	0.0001 0.0001
Hyperlipidema NEC & NO Coronary atherosclerosis	OS 27.					8 13	17.953967 25.951448	0.0002
Coronary atherosclerosi Vessel	s- Native					11	17.198595	0.0003
Lower extremity aneurysn	n 44.	100	45	5.19	1	6	22.402413	0.0001
Angina pectoris	070204	1387	352	1.58	1	8	20.024826	0.0001
Angina Pectoris NEC & N	OS 41	39 1334	337	1.57	1	8	18.708754	0.0002
Hematoma complicating a	procedure 998	12 457	171	1.95	1	11	16.032192	0.0008
Cardiac arrest	42	75 383	169	2.07	38	54	15.839396	0.0008
Respiratory failure	080601	3594	1033	1.26	42	56	14.164177	0.0036

"Alerts" are nearly all related to cardiovascular complications and all present in the simvastatin results.

Atorvastatin Primary Results (8 alerts)

Node	Node	Node	Node Outcomes	Relative	RW	RW	Test	P
Name	ID	Outcomes		Risk	Start	End	Statistic	Value
Unstable angina (intermediate coronary syndrome)	07020402	2293	986	1.67	1	15	45.805554	0.0001
Intermediate Coronary Syndrome	4111	2293	986	1.67	1	15	45.805554	0.0001
Disorders of lipid metabolism	03060000	6290	1240	1.32	1	7	28.4246	0.0001
Hyperlipidema NEC & NOS	2724	4561	986	1.28	1	8	17.953967	0.0002
Coronary atherosclerosis	07020404	5522	1794	1.29	1	13	25.951448	0.0001
Coronary atherosclerosis- Native Vessel	41401	2946	851	1.33	1	11	17.198595	0.0003
Lower extremity aneurysm	4423	100	45	5.19	1	6	22.402413	0.0001
	^=^^		^-^	^		Î		
Angina Pectoris NEC & NOS	4139	1334	337	1.57	1	8	18.708754	0.0002
Hematoma complicating a procedure	99812	457	171	1.95	1	11	16.032192	0.0008
Cardiac arrest	4275	383	169	2.07	38	54	15.839396	0.0008
Respiratory failure	08060100	3594	1033	1.26	42	56	14.164177	0.0036

"Alerts" are nearly all related to cardiovascular complications and all present in the simvastatin results.

Other Statin Results

Name	Exposure Cohort	Analytic Dataset	Alerts
PRAVASTATIN	739,483 episodes	182,559 events	Unstable angina
ROSUVASTATIN	614,382 episodes	130,611 events	None
LOVASTATIN	266,578 episodes	55,165 events	None
PITAVASTATIN	22,051 episodes	3,692 events	None
FLUVASTATIN	15,351 episodes	3,095 events	None

 Sensitivity Analysis: No new alerts at the 3rd level (ie, more aggregated level) not driven by lower level results

Why not Rhabdomyolysis?

 Graham et al found a mean time of onset that exceed the observation period for this study (21-1050 days, mean: 348 days)

^{1.} Graham DJ, Staffa JA, Shatin D, Andrade SE, Schech SD, La Grenade L, Gurwitz JH, Chan KA, Goodman MJ, Platt R. Incidence of Hospitalized Rhabdomyolysis in Patients Treated With Lipid-Lowering Drugs. *JAMA*. 2004;292(21):2585–2590. doi:10.1001/jama.292.21.258

Statins Takeaways

- No new, unexpected alerts identified
 - Alerts were clinically explainable given drug's indication and patient population
 - Suggest method has ability to filter out noise even in large samples (discriminate)
- Despite exclusions, there is still some lingering pre-existing disease
 - May be masking (drowning out) the temporal patterns of other potential alerts.

Limitations

- Self-Controlled Design:
 - Depends on onset times in the data model
 - Cannot distinguish sustained elevated risk of outcome
 - Is vulnerable to time-varying confounding
- Current TreeScan Software Limitations:
 - Acute outcome events only with fixed follow-up
 - New version with varying follow-up available in 2018
 - Removes potential selection bias
 - Increase size of cohort and time available for study

Summary

- TreeScan supports multiple common study designs
 - Right design for right product
- Self-controlled TreeScan methods perform...
 - Best when applied to stable patients (e.g., contraceptives, vaccines)
 - Moderate performance for statins; Better performance when excluding recently hospitalized / unstable patients
 - Poor performance for acutely ill, unstable patients

Sentinel Drugs Vaccines, Blood & Biologics Devices and Radiologic Health Communications FDA-Catalyst

Home >> Sentinel >> Surveillance Tools >> Software Toolkits

SURVEILLANCE TOOLS

- Active Risk Identification and Analysis (ARIA)
- Routine Querying Tools (Modular Programs)
- Software Toolkits
- Health Outcome of Interest Validations and Literature Reviews

Software Toolkits

Sentinel has a library of standalone programming tools written to standardize routine programming procedures such as selecting a cohort of members exposed to specific medical products, creating continuous treatment episodes, or identifying continuous enrollment periods in the Common Data Model. Each tool is a self-contained SAS® macro. They can be used in combination to facilitate development of Sentinel routine querying tools.

A description of each macro along with the macro code are available at the links below. Any visitor to this website with access to data in the Common Data Model format can use these software toolkits.

Sentinel

Drugs

Vaccines, Blood & Biologics

Devices and Radiologic Health

Communications

FDA-Catalyst

Report Finder

Home >> Sentinel >> Surveillance Tools >> Software Toolkits

SURVEILLANCE TOOLS

- Active Risk Identification and Analysis (ARIA)
- Routine Querying Tools (Modular Programs)
- Software Toolkits
- Health Outcome of Interest Validations and Literature Reviews

Software Toolkits

Sentinel has a library of standalone programming tools written to standardize routine programming procedures such as selecting a cohort of members exposed to specific medical products, creating continuous treatment episodes, or identifying continuous enrollment periods in the Common Data Model. Each tool is a self-contained SAS® macro. They can be used in combination to facilitate development of Sentinel routine querying tools.

A description of each macro along with the macro code are available at the links below. Any visitor to this website with access to data in the Common Data Model format can use these software toolkits.

Submit Comment

TreeExtraction Documentation

Project Title	TreeExtraction Documentation
Date Posted	Wednesday, February 7, 2018
Status	In progress
Deliverables	Sentinel Reusable Programs: TREE Extraction Program v1.2
	SAS Package Toolkit: TreeExtraction v1.2 Macros and Input Files
Related Links	TreeScan for Drugs

Sentinel Drugs Vaccines, Blood & Biologics Devices and Radiologic Health Communications FDA-Catalyst

Home >> Communications >> Publications and Presentations >> 2017 ICPE Workshop: TreeScan™: A Novel Data-Mining Tool For Medical Product Safety Surveillance

COMMUNICATIONS

- FDA Safety Communications
- Publications and Presentations
- Sentinel Initiative Events
- Report Finder

2017 ICPE Workshop: TreeScan™: A Novel Data-Mining Tool for Medical Product Safety Surveillance

Submit Comment

Project Title	2017 ICPE Workshop: TreeScan™: A Novel Data-Mining Tool for Medical Product Safety Surveillance
Date	Saturday, August 26, 2017
Location	Presentation
	TreeScan™: A Novel Data-Mining Tool for Medical Product Safety Surveillance
	Workshop Materials
	2011DxTree.txt
	Bernoulli.txt

Questions?

Knowledge Check

Website: www.zeetings.com/sentinel

Access code: Sentinel

Thank you!