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Fundamental terminology: information bias

Information bias
The estimate of disease occurrence or of effect is expected to be 
distorted by inaccurate measurement or classification of the 
exposure, outcome, or a covariate. 

Bias models will usually require
Estimate of the sensitivity and specificity of classification (overall, 
or within categories of the differential variable). Sometimes also 
prevalence of the misclassified variable.

Estimate of the positive and negative predictive value of the 
misclassified variable within categories of (some) other variables 
in the analysis
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Exposure Misclassification
Truth to expected observed

 Truth Expected Observation 
 X=E+ X=E– X=E+ X=E– 
D+ A B a=sD+A +  b=tD+B +  

(1-tD+)B (1-sD+)A 
D- C D c=sD–C + d=tD–D +  

(1 – tD–)D (1 – sD–)C 
Total NE+ (A+C) NE- (B+D) n E+ (a+c) n E– (b+d) 

 

 

Non-differential misclassification requires that 
sD+=sD–=s and tD+=tD–=t.
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Exposure Misclassification
Observed to expected truth using PV
 Observation Expected Truth 
 X=E+ X=E– X=E+ X=E– 
D+ a b A=a*PPVD++ B=D+ – A 

b*(1-NPV D+) 
D– c d C=c*PPV D–+ D=D– – C 

d*(1-NPV D–) 
Total nE+ (a+c) nE+ (b+d) NE+ (A+C) NE– (B+D) 

 

Given an observation and estimates of positive (PPV) 
and negative (NPV) predictive values within diseased 
and undiseased, recalculate expected truth
Obtain estimates of PPV and NPV in a substudy with 
gold standard measurement

Because the margins 
are fixed (fixed number 
of cases and non-cases), 
we can calculate B & D 
by subtraction
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Exposure Misclassification
Observed to expected truth
 
 
D+ 

D– 

Total 

Observation Expected Truth 
X=E+ X=E– X=E+ X=E– 

a b [a–(1–tD+) D+] 
/ [s D+–(1–t D+)] 

B=D+ – A 

c d [c–(1–t D–) D–] 
/ [s D+–(1–t D–)] 

D=D– – C 

nE+ (a+c) nE– (b+d) NE+ (a+c) NE– (b+d) 
Because the margins 
are fixed (fixed number 
of cases and non-cases), 
we can calculate B & D 
by subtraction

 

 

Given an observation and estimates of sensitivities 
and specificities, recalculate expected truth
Obtain estimates of s and t from literature, pilot 
studies, or substudy with gold standard measurement.  
s and t not necessarily non-differential
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Where do we find values to assign?
Internal sources: substudies or naturally occurring 
subpopulations

substudies: investigator designed to collect information on only a 
portion of the study / source population
naturally occurring: only a subpopulation of the study / source 
population have information available (not by investigator 
design)

External sources
Similar studies in similar populations
Educated guesses

Implicit values
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Designing substudies: Resources
Study resources are:

Time (investigator and staff)
Money (funds available to collect data)

Options for allocation of study resources
More information (more people, more follow-up)
Better information (validation substudies)
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Designing substudies: Sampling 
Sampling of the study population is almost always 
required. Otherwise, “validation” data are available for the 
whole study / source population
Sampling has consequences for:
Precision of estimated validation parameters
Validation parameters that can be calculated





234 people completed survey
58% said they had completed training, 42% were current students
35% said they had ever designed or implemented a study to validate a 
measurement
36% said their coursework included no information about validation study design
55% said they were very or somewhat confident they could design and 
implement a validation study
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Hypothetical Example: Information Bias
Truth

Exposed Unexposed
Cases 90 270

Non-cases 9910 89730
Total 10000 90000
Risk 0.009 0.003

Difference 0.006
Ratio 3



Blank text

Hypothetical Example: Information Bias
81=0.6∙90+

(1–0.9)∙270
0.6 sensitivity
0.9 specificity

Truth Observed
Exposed Unexposed Exposed Unexposed

Cases 90 270 Cases 81 279
Non-cases 9910 89730 Non-cases 14919 84721

Total 10000 90000 Total 15000 85000
Risk 0.009 0.003 Risk 0.0054 0.0033

Difference 0.006 Difference 0.0021
Ratio 3 Ratio 1.65
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0.6 sensitivity
0.9 specificity

Truth Observed
Exposed Unexposed Exposed Unexposed

Cases 90 270 Cases 81 279
Non-cases 9910 89730 Non-cases 14919 84721

Total 10000 90000 Total 15000 85000
Risk 0.009 0.003 Risk 0.0054 0.0033

Difference 0.006 Difference 0.0021
Ratio 3 Ratio 1.65

cases non-cases0.6*90/81 0.6*9910/14919
PPV 0.667 0.399
NPV 0.871 0.9530.9*270/279 0.9*89730/84721

Hypothetical Example: Information Bias



Cases Non-cases
0% sample Truth 10% sample Truth
Observed Exposed Unexposed

Exposed 5 3
Total Observed Exposed Un

8 Exposed 595
exposed

897
Total
1492

Unexposed 4 24 28 Unexposed 396 8076 8472
Total 9 27 Total 991 8973

sensitivity 0.556 0.24, 0.84 sensitivity 0.600 0.57, 0.63
specificity 0.889 0.73, 0.97 specificity 0.900 0.89, 0.91

PPV 0.625 0.28, 0.89 PPV 0.399 0.37, 0.42
NPV 0.857 0.69, 0.95 NPV 0.953 0.95, 0.96

Simple Random Sample: 
Get all the right answers, but 

Blank text statistically inefficient and costly

Hypothetical Example: Information Bias

1
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Hypothetical Example: Information Bias

Cases balanced, observed Non-cases balanced, observed
Truth Truth

Observed
Exposed

Exposed Unexposed Total Observed Exposed Unexposed Total
54 27 81 Exposed 32 49 81

Unexposed 10 71 81 Unexposed 4 77 81
Total 64 98 162 Total 36 126 162

sensitivity 0.844 0.74, 0.92 sensitivity 0.889 0.75, 0.96
specificity 0.724 0.63, 0.81 specificity 0.611 0.52, 0.69

PPV 0.667 0.56, 0.76 PPV 0.395 0.29, 0.50
NPV 0.877 0.79, 0.94 NPV 0.951 0.89, 0.98

Balanced sample of observed: 
Get the right PPV & NPV, much 
less costly, cannot estimate 
sensitivity or specificity

Holcroft CA, Spiegelman D. Design of validation studies for estimating the odds 
ratio of exposure-disease relationships when exposure is misclassified. Biometrics. 
1999 Dec;55(4):1193–201. 
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Hypothetical Example: Information Bias

Cases balanced, truth Non-cases balanced, truth
Truth Truth

Observed Exposed Unexposed Total Observed Exposed Unexposed Total
Exposed 54 9 63 Exposed 54 9 63

Unexposed 36 81 117 Unexposed 36 81 117
Total 90 90 180 Total 90 90 180

sensitivity 0.600 0.50, 0.70 sensitivity 0.600 0.50, 0.70
specificity 0.900 0.82, 0.95 specificity 0.900 0.82, 0.95

PPV 0.857 0.75, 0.93 PPV 0.857 0.75, 0.93
NPV 0.692 0.60, 0.77 NPV 0.692 0.60, 0.77

Balanced sample of truth: 
Get the right sensitivity and 
specificity, much less costly, 
cannot estimate PPV or NPV

Holcroft CA, Spiegelman D. Design of validation studies for estimating the odds 
ratio of exposure-disease relationships when exposure is misclassified. Biometrics. 
1999 Dec;55(4):1193–201. 
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Adaptive Design
Validation study design inherently involves sampling, and 
often involves expense

Can conduct validation study sampling until reaching a 
threshold

Bias parameter measured well enough to stop
Bias-adjusted estimate measured well enough to stop
Resource allocation favors study size over validation study size
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Cost-efficient validation designs
Typically assume 

Sample size constrained by fixed budget or budget proportion
Fixed price per validated record

See, for examples
Spiegelman D, Gray R. Cost-Efficient Study Designs for 
Binary Response Data with Gaussian Covariate 
Measurement Error. Biometrics. 1991;47(3):851–69. 
Stram DO, Longnecker MP, Shames L, Kolonel LN, Wilkens 
LR, Pike MC, et al. Cost-efficient design of a diet validation 
study. Am J Epidemiol. 1995 Aug 1;142(3):353–62. 
Spiegelman D. Cost-efficient study designs for relative risk 
modeling with covariate measurement error. J Stat Plan 
Inference. 1994 Nov 1;42(1):187–208.



Adaptive Validation Design



Previous guidance on sampling of participants for validation studies apply to 
scenarios where the study population enrollment and follow-up have been 
completed.

Alternatively, researchers may want to collect validation data prospectively and 
identify at which point sufficient validation data have been collected, 
potentially saving time and resources.

Adaptive Design: background



Adaptive Design: background

This design uses the framework of Bayesian 
monitoring techniques, often used in clinical 
trials to monitor treatment response over 
time.

In our approach, we extend this framework 
to inform when sufficient validation data 
have been collected to meet the goals of 
validation.



Adaptive Design: approach

We iteratively update a prior (the classification parameter of 
interest) with validation data at specified time points until 
stopping criteria have been met.

Classification Parameters:
Positive and Negative Predictive Values 

(PPV and NPV)

Sensitivity and Specificity



Adaptive Design: approach

We start with a uniform prior, which assumes all values (0–1) of the 
classification parameter as being equally likely, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (1,1). 
We then update the parameters in blocks of participants. 

Posterior: 𝛉𝛉|𝒚𝒚𝒋𝒋 ~ 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 (𝜶𝜶𝒋𝒋,𝜷𝜷𝒋𝒋)

We update the classification parameters in a beta-binomial Bayesian 
model.



Adaptive Design: approach
Classification parameters are updated at specified time intervals 
while the validation data accrue

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝟏𝟏: 𝑝𝑝 𝜃𝜃 𝑦𝑦1 ∝ 𝑝𝑝 𝑦𝑦1 𝜃𝜃 ∗ 𝑝𝑝 𝜃𝜃

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝟐𝟐: 𝑝𝑝 𝜃𝜃 𝑦𝑦2,𝑦𝑦1 ∝ 𝑝𝑝 𝑦𝑦2 𝜃𝜃 ∗ 𝑝𝑝(𝜃𝜃|𝑦𝑦1)

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝐣𝐣:𝑝𝑝 𝜃𝜃 𝑦𝑦j, …𝑦𝑦2,𝑦𝑦1 ∝ 𝑝𝑝 𝑦𝑦j 𝜃𝜃 ∗ 𝑝𝑝(𝜃𝜃|𝑦𝑦𝑗𝑗−1, … ,𝑦𝑦2,𝑦𝑦1)

Posterior Likelihood Prior



Adaptive Design: stopping criteria

Goals of validation often vary across study designs

Can include:
1) Precision of classification parameters
2) Efficacy/futility of validation
3) Precision of bias-adjusted estimate of association



Adaptive Validation Design
Stopping based on precision of classification parameters



Adaptive Design: example
Colorectal cancer is the third most 
common malignancy and the third leading 
cause of cancer related mortality globally.

Despite improved survival, the 5-year risk 
of recurrence is estimated to be 20–50% 
depending on stage and other tumor 
characteristics at diagnosis.

Cancer recurrence is not routinely 
collected by most population-based 
registries.

Holmes, Riis, Erichsen et al. 2017, Acta Oncologica

Cumulative Incidence of CRC recurrence



Adaptive Design: example

Use the adaptive validation study design to model when 
sufficient validation data have been been collected to 
validate CRC recurrences identified through an 
algorithm.



Adaptive Design: study population
Danish CRC patients who underwent surgery and registered with the Danish 
Colorectal Cancer Group (DCCG) database.
Patients were enrolled (n=355) and actively followed biennially for colorectal 
cancer recurrence, 63 (18%) developed a recurrence over follow-up.



Adaptive Design: approach

Two validation substudies
1. Sample based on algorithm defined recurrences and 
validate against gold standard of follow-up. This allows 
for estimation of PPV and NPV.

2. Sample based on actively followed cohort and 
compare with algorithm defined recurrences. This allows 
for estimation of Sensitivity and Specificity.



Adaptive Design: stopping criteria

Predefined threshold value and level of precision

PPV and NPV:  threshold= lower 95% credible bound for PPV 
and NPV >0.80

precision= 0.15

Se and Sp:       threshold= lower 95% credible bound for Se
and Sp >0.90

precision= 0.08



Adaptive Design: sampling strategy

Order based on timing of recurrence 

Sample 10 with and 10 without a 
recurrence identified (n=20)

Validate recurrences

Estimate classification parameters

Repeat until stopping criteria are 
met



Adaptive Design: results

Method PPV NPV Number Validated

Complete data 0.86 (0.75, 0.93) 0.99 (0.97, 1.00) 355

Adaptive Validation –20 0.90 (0.82, 0.96) 0.98 (0.94, 1.00) 120

Sensitivity Specificity

Complete data 0.95 (0.87, 0.99) 0.97 (0.94, 0.98) 355

Adaptive Validation –20 0.95 (0.90, 0.99) 0.98 (0.94, 1.00) 120



Positive 
and 

Negative 
Predictive 

Values



Sensitivity 
and 

Specificity



Adaptive Design: summary

Classification parameters estimated using the adaptive validation 
approach were similar to those computed using complete validation.

Considerations:
Stopping criteria should be informed based on subject matter 
knowledge and goals for validation.
PPV/NPV within strata of exposure/outcome if using 
classification parameters in bias analysis.
Sensitivity/Specificity require subset of population to have gold 
standard available, or random sample (which can be 
inefficient).
N included at each iteration of validation.



Adaptive Validation Design
Stopping based on efficacy/futility of validation



Adaptive Design: example 2
Study of Transition, Outcomes and Gender (STRONG) cohort was 
established to understand long-term effects of hormone therapy 
and surgery on gender dysphoria, mental health, and chronic 
illnesses.
Electronic health record-based study of individuals identifed from 
Kaiser Permanente health plans in Georgia, Northern California, 
and Southern California between 2006 and 2014.
Study populations included transgender and gender 
nonconforming children and adolescents (n=1,331) and adults 
(n=4,725).



Adaptive Design: exposure validation
The exposure of interest was transmasculine and transfeminine status, 
which can be determined from knowledge of the sex recorded at birth and 
current gender identity. 

The misclassified sex recorded at birth was based on the recent electronic 
health record (EHR) data and known to be misclassified because it could 
either represent sex recorded at birth or concurrent gender identity.

The misclassified sex recorded at birth variable was validated by medical 
record review for all members who were ≥18 years old as of January 1, 
2015 (n=535; 40% of the youth subcohort and 100% adult subcohort).



Adaptive Design: exposure validation

We estimate classification parameters (PPV and NPV)



Adaptive Design: stopping criterion

Predefined threshold value

Efficacy:  threshold= lower 95% credible bound for PPV and 
NPV >0.60

Futility:  threshold= upper 95% credible bound for PPV and 
NPV <0.60



Adaptive Design: sampling strategy

Order based on cohort enrollment

Sample 10 with gender code ‘female’ 
and 10 with gender code ‘male’ (n=20)

Validate gender code

Estimate classification parameters (PPV 
and NPV)

Repeat until stopping criteria are met



Adaptive Design: results

Method PPV NPV Number Validated
Days into Study 

Period

Complete data 0.92 (0.88, 0.95) 0.81 (0.76, 0.86) 535 2897

Adaptive Validation –20 0.87 (0.79, 0.95) 0.71 (0.60, 0.82) 120 711

Method PPV NPV Number Validated
Days into Study 

Period

Complete data 0.49 (0.47, 0.51) 0.62 (0.60, 0.64) 4725 3921

Adaptive Validation –20 0.25 (0.04, 0.48) 0.42 (0.16, 0.68) 20 3

Yo
ut

h
Ad

ul
t



Youth 
Subcohort



Adult 
Subcohort



Adaptive Design: single person validation, youth subcohort

PPV NPV



Adaptive Design: summary

Demonstrate how the method can be used to determine 
efficacy/futility of validation, optimizing study resources concurrent 
with cohort enrollment and follow-up. 

Considerations:
Efficacy/futility should be consistent with goals for validation.
Prospective monitoring of validation data allows for detection 
of time trend in classification parameters, which is not 
possible in conventional validation study designs.
Detection of a time trend may change the approach to 
validation or use of classification parameters in quantitative 
bias analysis.



Adaptive Validation Design
Stopping based on precision of bias-adjusted estimate of association



Adaptive Design: example 3

Sample validation data are collected until the bias-
adjusted estimate of effect reaches a prespecified level of 
precision. 

Example of this approach in the association between 
transmasculine/transfeminine status and self-inflicted 
injury, adjusting for the possible misclassification of 
transmasculine/transfeminine status. 



Adaptive Design: exposure validation

We estimate PPV and NPV within strata of self-inflicted injury 
(yes/no) to be used in the bias analysis



Adaptive Design: stopping criterion
Precision of the bias-adjusted OR no more than 80% wider than the 
precision of the conventional estimate.

Conventional:  precision = 2.80/1.41 = 1.99
Bias-adjusted: precision = 1.99*1.80 = 3.58

Transmasculine Transfeminine
Se

lf-
in

fli
ct

ed
 

In
ju

ry
Yes 113 54

No 597 567

OR=1.99 (95%CI: 1.41, 2.80)



Adaptive Design: stopping criterion

Precision of the bias-adjusted OR requires computation of the 
variance of the bias-adjusted OR. 



Adaptive Design: sampling strategy
Sample 10 within each exposure and 

outcome categories (n=40)

Validate observed exposure with gold 
standard measurement

Estimate the updated classification 
parameters and precision of bias-

adjusted estimate

Repeat until predefined precision is met



Conventional and bias-adjusted effect estimates between transmasculine/transfeminine and self-inflicted injury in the STRONG 
cohort.

Self-inflicted injury No self-inflicted injury

Method PPV (95% CI) NPV (95% CI) PPV (95% CI) NPV (95% CI)
Number 

Validated OR (95% CI)
Precision

(UCL95/LCL95)

Conventional 100% 100% 100% 100% 0 1.99 (1.41, 2.80) 1.99

Adaptive 
Validation 81% (64%, 93%) 76% (56%, 90%) 91% (75%, 98%) 84% (67%, 95%) 117 1.40 (0.77, 2.52) 3.26

Complete 
Validation Set 87% (76%, 95%) 78% (58%, 91%) 93% (89%, 96%) 81% (76%, 86%) 535 1.47 (0.95, 2.26) 2.38

Adaptive Design: results



Adaptive Design: results
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Adaptive Design: summary

The bias-adjusted OR computed with the adaptive validation 
approach was comparable to the bias-adjusted OR obtained using 
the complete validation data. 

Considerations:
Define acceptable level of precision that will yield 
substantively meaningful results. 
Probabilistic bias analysis is often preferable to account for 
uncertainty in classification parameters, confounders, and 
random error. 



Adaptive Validation Design
Conclusions and future directions



Adaptive Design: conclusions
Example 1: Illustrate how the adaptive validation design can be used 
simultaneous with cohort enrollment and follow-up to collect validation 
data until a desired threshold and precision is met.



Adaptive Design: conclusions
Example 1: Illustrate how the adaptive validation design can be used 
simultaneous with cohort enrollment and follow-up to collect validation 
data until a desired threshold and precision is met.
Example 2: Illustrate how the method can be used to determine 
efficacy/futility of validation, optimizing study resources concurrent 
with cohort enrollment and follow-up. 



Adaptive Design: conclusions
Example 1: Illustrate how the adaptive validation design can be used 
simultaneous with cohort enrollment and follow-up to collect validation 
data until a desired threshold and precision is met.
Example 2: Illustrate how the method can be used to determine 
efficacy/futility of validation, optimizing study resources concurrent 
with cohort enrollment and follow-up. 
Example 3: Illustrate an approach to effective and efficient estimation 
of classification parameters as validation data accrue, with emphasis 
on the precision of the bias-adjusted estimate. 



Adaptive Design: advantages

The approach offers a validation substudy design suitable for 
scenarios in which validation data are collected in real time and 
applicable to any parent epidemiologic study.

Allows researchers to carefully allocate fixed study resources when 
implementing validation studies, amenable to different objectives for 
validation.

Our method also outlines an approach to study design based on 
precision that can account for both random and systematic errors.



Adaptive Design: future directions

1) Time trend in classification parameters.

2) Assess probability that inference will change if stop validation 
efforts. 

3) Methods to determine ‘next best’ subgroup for validation.

Continued work to guide effective and efficient validation substudy 
design is an important consideration in epidemiology
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